Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China

[1]  Robert P. Broadwater,et al.  Current status and future advances for wind speed and power forecasting , 2014 .

[2]  Dongxiao Niu,et al.  Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm , 2014 .

[3]  Jie Yu,et al.  Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach , 2014 .

[4]  Jianzhou Wang,et al.  A hybrid forecasting approach applied to wind speed time series , 2013 .

[5]  Hui Liu,et al.  Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks , 2013 .

[6]  Wenyu Zhang,et al.  Short-term wind speed forecasting based on a hybrid model , 2013, Appl. Soft Comput..

[7]  Jie Wu,et al.  Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model , 2013 .

[8]  Jianzhou Wang,et al.  Wind energy potential assessment for the site of Inner Mongolia in China , 2013 .

[9]  Andrew Kusiak,et al.  Very short-term wind speed forecasting with Bayesian structural break model , 2013 .

[10]  Bijaya Ketan Panigrahi,et al.  Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm , 2013 .

[11]  Chao Chen,et al.  A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks , 2012 .

[12]  Hui Liu,et al.  Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction , 2012 .

[13]  Tomonobu Senjyu,et al.  A new strategy for predicting short-term wind speed using soft computing models , 2012 .

[14]  Jiangfeng Wang,et al.  Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China , 2012 .

[15]  Haiyan Lu,et al.  Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model , 2012 .

[16]  J. A. Carta,et al.  A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind , 2011 .

[17]  Joao P. S. Catalao,et al.  Short-term wind power forecasting in Portugal by neural networks and wavelet transform , 2011 .

[18]  Ruddy Blonbou,et al.  Very short-term wind power forecasting with neural networks and adaptive Bayesian learning , 2011 .

[19]  Jianzhou Wang,et al.  A corrected hybrid approach for wind speed prediction in Hexi Corridor of China , 2011 .

[20]  Sancho Salcedo-Sanz,et al.  Extraction of synoptic pressure patterns for long-term wind speed estimation in wind farms using evo , 2011 .

[21]  M. M. Ardehali,et al.  Very short-term wind speed prediction: A new artificial neural network–Markov chain model , 2011 .

[22]  Jing Shi,et al.  Bayesian adaptive combination of short-term wind speed forecasts from neural network models , 2011 .

[23]  Peng Guo,et al.  A Review of Wind Power Forecasting Models , 2011 .

[24]  Heping Liu,et al.  Prediction of wind speed time series using modified Taylor Kriging method , 2010 .

[25]  Erasmo Cadenas,et al.  Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model , 2010 .

[26]  Chao Chen,et al.  A hybrid statistical method to predict wind speed and wind power , 2010 .

[27]  Jianzhou Wang,et al.  A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand , 2009 .

[28]  R. E. Abdel-Aal,et al.  Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks , 2009 .

[29]  Ángel M. Pérez-Bellido,et al.  Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction , 2009 .

[30]  R. Kavasseri,et al.  Day-ahead wind speed forecasting using f-ARIMA models , 2009 .

[31]  W. Rivera,et al.  Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks , 2009 .

[32]  U. Focken,et al.  New developments in wind energy forecasting , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[33]  Eugene Fernandez,et al.  Analysis of wind power generation and prediction using ANN: A case study , 2008 .

[34]  Mehrdad Abedi,et al.  Short term wind speed forecasting for wind turbine applications using linear prediction method , 2008 .

[35]  S.A.P. Kani,et al.  A new ANN-based methodology for very short-term wind speed prediction using Markov chain approach , 2008, 2008 IEEE Canada Electric Power Conference.

[36]  W. Rivera,et al.  Wind speed forecasting in the South Coast of Oaxaca, México , 2007 .

[37]  D. Basak,et al.  Support Vector Regression , 2008 .

[38]  R.W. Dunn,et al.  One-hour-ahead wind speed prediction using a Bayesian methodology , 2006, 2006 IEEE Power Engineering Society General Meeting.

[39]  E.F. El-Saadany,et al.  One day ahead prediction of wind speed using annual trends , 2006, 2006 IEEE Power Engineering Society General Meeting.

[40]  J.B. Theocharis,et al.  Long-term wind speed and power forecasting using local recurrent neural network models , 2006, IEEE Transactions on Energy Conversion.

[41]  Ismael Sánchez,et al.  Short-term prediction of wind energy production , 2006 .

[42]  A. Shamshad,et al.  First and second order Markov chain models for synthetic generation of wind speed time series , 2005 .

[43]  P. Pinson,et al.  What performance can be expected by short-term wind power prediction models depending on site characteristics? , 2004 .

[44]  H. Kantz,et al.  Markov chain model for turbulent wind speed data , 2004 .

[45]  Mohamed Mohandes,et al.  Support vector machines for wind speed prediction , 2004 .

[46]  Michael Negnevitsky,et al.  SHORT-TERM WIND FORECASTING TECHNIQUES FOR POWER GENERATION , 2004 .

[47]  Lennart Söder,et al.  Wind energy technology and current status : a review , 2000 .

[48]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[49]  Qin He,et al.  Neural Network and Its Application in IR , 1999 .

[50]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[51]  Lars Landberg,et al.  Short-term prediction of local wind conditions , 1994 .

[52]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[53]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[54]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .