Efficient solution of structural default models with correlated jumps and mutual obligations

The structural default model of Lipton and Sepp [Credit value adjustment for credit default swaps via the structural default model, J. Credit Risk 5(2) (2009), pp. 123–146] is generalized for a set of banks with mutual interbank liabilities whose assets are driven by correlated Lévy processes with idiosyncratic and common components. The multi-dimensional problem is made tractable via a novel computational method, which generalizes the one-dimensional fractional partial differential equation method of Itkin [Efficient solution of backward jump-diffusion PIDEs with splitting and matrix exponentials, J. Comput. Financ. (2014), forthcoming. Available at http://arxiv.org/abs/1304.3159] to the two- and three-dimensional cases. This method is unconditionally stable and of the second order of approximation in space and time; in addition, for many popular Lévy models it has linear complexity in each dimension. Marginal and joint survival probabilities for two and three banks with mutual liabilities are computed. The effects of mutual liabilities are discussed, and numerical examples are given to illustrate these effects.

[1]  E. Eberlein Jump–Type Lévy Processes , 2009 .

[2]  Oldrich A Vasicek Limiting Loan Loss Probability Distribution , 2015 .

[3]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[4]  Martin Baxter Lévy Simple Structural Models , 2007 .

[5]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[6]  Alexander Lipton,et al.  Pricing credit default swaps with bilateral value adjustments , 2012, 1207.6049.

[7]  Alexander Lipton,et al.  Credit Value Adjustment in the Extended Structural Default Model , 2011 .

[8]  L. Ballotta,et al.  Multivariate asset models using Lévy processes and applications , 2012 .

[9]  Fan Yu,et al.  CORRELATED DEFAULTS IN INTENSITY‐BASED MODELS , 2007 .

[10]  Andreas E. Kyprianou,et al.  Meromorphic Lévy processes and their fluctuation identities. , 2010, 1004.4671.

[11]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[12]  Martin Summer,et al.  Using Market Information for Banking System Risk Assessment , 2005 .

[13]  Larry Eisenberg,et al.  Systemic Risk in Financial Networks , 1999, Manag. Sci..

[14]  Christoph Winter,et al.  Wavelet Galerkin schemes for option pricing in multidimensional Lévy models , 2009 .

[15]  Wim Schoutens,et al.  Lévy base correlation , 2007 .

[16]  America Merrill Lynch,et al.  Credit value adjustment for credit default swaps via the structural default model , 2009 .

[17]  R. E. Raab,et al.  Operator Methods in Quantum Mechanics , 1992 .

[18]  James M. McDonough,et al.  Lectures on Computational Numerical Analysis of Partial Differential Equations , 2008 .

[19]  C. Schwab,et al.  NUMERICAL SOLUTION OF PARABOLIC EQUATIONS IN HIGH DIMENSIONS , 2004 .

[20]  K. J. in 't Hout,et al.  Stability of ADI schemes for multidimensional diffusion equations with mixed derivative terms , 2012 .

[21]  Thomas Moosbrucker Copulas from Inflnitely Divisible Distributions: Applications to Credit Value at Risk , 2006 .

[22]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[23]  Andrey Itkin,et al.  Splitting and Matrix Exponential Approach for Jump-Diffusion Models with Inverse Normal Gaussian, Hyperbolic and Meixner Jumps , 2014, Algorithmic Finance.

[24]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[25]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[26]  Daniel B. Szyld,et al.  Generalizations of M-matrices which may not have a nonnegative inverse , 2008 .

[27]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[28]  G. Deelstra,et al.  How they can jump together: Multivariate Lévy Processes and Option pricing , 2010 .

[29]  Ioannis Kyriakou,et al.  Monte Carlo Simulation of the CGMY Process and Option Pricing , 2013 .

[30]  C. Schwab,et al.  Computational Methods for Quantitative Finance: Finite Element Methods for Derivative Pricing , 2013 .

[31]  Yunpeng Sun,et al.  Valuation of collateralized debt obligations in a multivariate subordinator model , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[32]  Tinne Haentjens,et al.  Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation , 2012 .

[33]  Jan-Frederik Mai,et al.  Sequential modeling of dependent jump processes , 2014 .

[34]  Andrey Itkin,et al.  Efficient Solution of Backward Jump-Diffusion PIDEs with Splitting and Matrix Exponentials , 2013, 1304.3159.

[35]  Florence Guillaume The αVG model for multivariate asset pricing: calibration and extension , 2013 .

[36]  Stéphane Crépey,et al.  Markov Chain Models of Portfolio Credit Risk , 2011 .

[37]  Alfred Lehar,et al.  Macroprudential Regulation and Systemic Capital Requirements , 2010 .

[38]  Andrey Itkin,et al.  Using Pseudo-Parabolic and Fractional Equations for Option Pricing in Jump Diffusion Models , 2010 .

[39]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[40]  Andrey Itkin,et al.  HIGH ORDER SPLITTING METHODS FOR FORWARD PDEs AND PIDEs , 2014, 1403.1804.

[41]  Chunsheng Zhou,et al.  The term structure of credit spreads with jump risk , 2001 .

[42]  K. I. '. Hout,et al.  ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.

[43]  F. Black,et al.  VALUING CORPORATE SECURITIES: SOME EFFECTS OF BOND INDENTURE PROVISIONS , 1976 .

[44]  Eurandom,et al.  Meixner Processes in Finance ∗ , 2001 .

[45]  H. Block Multivariate Exponential Distribution , 2006 .

[46]  Andrey Itkin,et al.  Jumps without tears: A new splitting technology for barrier options , 2011 .

[47]  Bruno Welfert,et al.  Stability of ADI schemes applied to convection-diffusion equations with mixed derivative terms , 2007 .

[48]  Peter A. Forsyth,et al.  Numerical solution of two asset jump diffusion models for option valuation , 2008 .

[49]  Jan W Dash Quantitative Finance and Risk Management: A Physicist's Approach , 2004 .

[50]  Oldrich A Vasicek 19. Loan Portfolio Value , 2015 .

[51]  Patrizia Semeraro,et al.  Multivariate time changes for Lévy asset models: Characterization and calibration , 2010, J. Comput. Appl. Math..

[52]  Matthew Willison,et al.  Systemic Capital Requirements , 2011 .

[53]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .