MFS-LDA: a multi-feature space tag recommendation model for cold start problem

Tags are used to annotate resources on social media platforms. Most tag recommendation methods use popular tags, but in the case of new resources that are as yet untagged (the cold start problem), popularity-based tag recommendation methods fail to work. The purpose of this paper is to propose a novel model for tag recommendation called multi-feature space latent Dirichlet allocation (MFS-LDA) for cold start problem.,MFS-LDA is a novel latent Dirichlet allocation (LDA)-based model which exploits multiple feature spaces (title, contents, and tags) for recommending tags. Exploiting multiple feature spaces allows MFS-LDA to recommend tags even if data from a feature space is missing (the cold start problem).,Evaluation of a publicly available data set consisting of around 20,000 Wikipedia articles that are tagged on a social bookmarking website shows a significant improvement over existing LDA-based tag recommendation methods.,The originality of MFS-LDA lies in segregation of features for removing bias toward dominant features and in synchronization of multiple feature space for tag recommendation.

[1]  Petros Daras,et al.  Content-based tag propagation and tensor factorization for personalized item recommendation based on social tagging , 2014, TIIS.

[2]  S. Chenthur Pandian,et al.  Effective Tag Recommendation System Based on Topic Ontology Using Wikipedia and WordNet , 2012, Int. J. Intell. Syst..

[3]  Evangelos E. Milios,et al.  Tag Sources for Recommendation in Collaborative Tagging Systems , 2009, DC@PKDD/ECML.

[4]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[5]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Evolutionary computing in recommender systems: a review of recent research , 2017, Natural Computing.

[6]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[7]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[8]  Mubashar Mushtaq,et al.  Saving lives using social media: Analysis of the role of twitter for personal blood donation requests and dissemination , 2017, Telematics Informatics.

[9]  Royi Ronen,et al.  Selecting content-based features for collaborative filtering recommenders , 2013, RecSys.

[10]  Gregor Heinrich Parameter estimation for text analysis , 2009 .

[11]  Ralf Krestel,et al.  Tag Recommendation Using Probabilistic Topic Models , 2009, DC@PKDD/ECML.

[12]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[13]  Ralf Krestel,et al.  Latent dirichlet allocation for tag recommendation , 2009, RecSys '09.

[14]  Sofia Angeletou Semantic Enrichment of Folksonomy Tagspaces , 2008, International Semantic Web Conference.

[15]  B. Zhou,et al.  Tags Are Related: Measurement of Semantic Relatedness Based on Folksonomy Network , 2011, Comput. Informatics.

[16]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[17]  Ruixuan Li,et al.  Semantic Grounding of Hybridization for Tag Recommendation , 2010, WAIM.

[18]  Yang Song,et al.  Real-time automatic tag recommendation , 2008, SIGIR '08.

[19]  José Ramón Cano,et al.  CommuniMents: A Framework for Detecting Community Based Sentiments for Events , 2017, Int. J. Semantic Web Inf. Syst..

[20]  C. Lee Giles,et al.  Automatic tag recommendation for metadata annotation using probabilistic topic modeling , 2013, JCDL '13.

[21]  Lukasz Kurgan,et al.  Data Mining and Knowledge Discovery Data Mining and Knowledge Discovery , 2002 .

[22]  Andreas Hotho,et al.  Mining Association Rules in Folksonomies , 2006, Data Science and Classification.

[23]  Huan Liu,et al.  Community detection via heterogeneous interaction analysis , 2012, Data Mining and Knowledge Discovery.

[24]  Vittorio Loreto,et al.  Network properties of folksonomies , 2007, AI Commun..

[25]  Yanhui Guo,et al.  Topic-based personalized recommendation for collaborative tagging system , 2010, HT '10.

[26]  Hans-Peter Kriegel,et al.  Hierarchical Bayesian Models for Collaborative Tagging Systems , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[27]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[28]  Feicheng Ma,et al.  Utilising social network analysis to study the characteristics and functions of the co-occurrence network of online tags , 2014, Online Inf. Rev..

[29]  Pasquale Lops,et al.  Content-based and collaborative techniques for tag recommendation: an empirical evaluation , 2012, Journal of Intelligent Information Systems.

[30]  Hyoseop Shin,et al.  Tag recommendation by machine learning with textual and social features , 2012, Journal of Intelligent Information Systems.

[31]  Xavier Serra,et al.  Inferring Semantic Facets of a Music Folksonomy with Wikipedia , 2013 .

[32]  Jussara M. Almeida,et al.  On cold start for associative tag recommendation , 2016, J. Assoc. Inf. Sci. Technol..

[33]  Lei Zhang,et al.  Modeling Ontology of Folksonomy with Latent Semantics of Tags , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[34]  Mubashar Mushtaq,et al.  INTWEEMS: a framework for incremental clustering of tweet streams , 2015, iiWAS.

[35]  Jussara M. Almeida,et al.  Personalized and object-centered tag recommendation methods for Web 2.0 applications , 2014, Inf. Process. Manag..

[36]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[37]  A. Zubiaga Enhancing Navigation on Wikipedia with Social Tags , 2012, ArXiv.

[38]  Rabeeh Ayaz Abbasi Exploiting Social Media Features for Automated Tag Recommendation , 2012, Collaboration and the Semantic Web.

[39]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Tianqing Zhu,et al.  Privacy-preserving topic model for tagging recommender systems , 2015, Knowledge and Information Systems.

[41]  P. Anderson What is Web 2.0? Ideas, technologies and implications for education , 2007 .

[42]  Rabeeh Abbasi,et al.  Query Expansion in Folksonomies , 2010, SAMT.

[43]  M. Lipczak,et al.  Tag Recommendation for Folksonomies Oriented towards Individual Users , 2008 .

[44]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[45]  Mathias Lux,et al.  The Web 2.0 way of learning with technologies , 2007, Int. J. Learn. Technol..

[46]  Enrico Motta,et al.  Integrating Folksonomies with the Semantic Web , 2007, ESWC.

[47]  Panagiotis Symeonidis,et al.  Tag recommendations based on tensor dimensionality reduction , 2008, RecSys '08.

[48]  Xavier Serra,et al.  Folksonomy-Based Tag Recommendation for Collaborative Tagging Systems , 2013, Int. J. Semantic Web Inf. Syst..

[49]  Steffen Staab,et al.  Large Scale Tag Recommendation Using Different Image Representations , 2009, SAMT.

[50]  Markus Strohmaier,et al.  Exploring the Influence of Tagging Motivation on Tagging Behavior , 2010, ECDL.

[51]  Kyu-Baek Hwang,et al.  A Weighting Scheme for Tag Recommendation in Social Bookmarking Systems , 2009, DC@PKDD/ECML.

[52]  Zhoujun Li,et al.  The topic-perspective model for social tagging systems , 2010, KDD.

[53]  Georgia Koutrika,et al.  Can social bookmarking improve web search? , 2008, WSDM '08.

[54]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[55]  Hikmat Ullah Khan,et al.  Modelling to identify influential bloggers in the blogosphere: A survey , 2017, Comput. Hum. Behav..

[56]  Juan-Zi Li,et al.  Knowledge discovery through directed probabilistic topic models: a survey , 2010, Frontiers of Computer Science in China.

[57]  Maosong Sun,et al.  Tag-LDA for Scalable Real-time Tag Recommendation , 2009 .