Log‐Sobolev Inequality for the Continuum Sine‐Gordon Model

We derive a multiscale generalisation of the Bakry‐Émery criterion for a measure to satisfy a log‐Sobolev inequality. Our criterion relies on the control of an associated PDE well‐known in renormalisation theory: the Polchinski equation. It implies the usual Bakry‐Émery criterion, but we show that it remains effective for measures that are far from log‐concave. Indeed, using our criterion, we prove that the massive continuum sine‐Gordon model with β < 6π satisfies asymptotically optimal log‐Sobolev inequalities for Glauber and Kawasaki dynamics. These dynamics can be seen as singular SPDEs recently constructed via regularity structures, but our results are independent of this theory. © 2021 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.

[1]  G. Slade,et al.  Introduction to a Renormalisation Group Method , 2019, Lecture notes in mathematics.

[2]  V. Vargas,et al.  A probabilistic approach of ultraviolet renormalization in the boundary Sine-Gordon model , 2019, Probability Theory and Related Fields.

[3]  D. Marchetti,et al.  On the Mayer Series of Two-Dimensional Yukawa Gas at Inverse Temperature in the Interval of Collapse , 2019, Journal of Statistical Physics.

[4]  T. Bodineau,et al.  Spectral Gap Critical Exponent for Glauber Dynamics of Hierarchical Spin Models , 2018, Communications in Mathematical Physics.

[5]  K. Matetski Martingale-driven approximations of singular stochastic PDEs , 2018, 1808.09429.

[6]  Martin Hairer,et al.  The dynamical sine-Gordon model in the full subcritical regime , 2018, 1808.02594.

[7]  F. Otto,et al.  Toward a quantitative theory of the hydrodynamic limit , 2018, 1807.09857.

[8]  E. Saksman,et al.  Imaginary multiplicative chaos: Moments, regularity and connections to the Ising model , 2018, The Annals of Applied Probability.

[9]  M. Gubinelli,et al.  A variational method for Φ 3 4 , 2018, 1805.10814.

[10]  Martin Hairer,et al.  Discretisation of regularity structures , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[11]  H. Weber,et al.  Convergence of the Two‐Dimensional Dynamic Ising‐Kac Model to Φ24 , 2017 .

[12]  Hendrik Weber,et al.  Spectral gap for the stochastic quantization equation on the 2-dimensional torus , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[13]  Martin Hairer,et al.  Discretisations of rough stochastic PDEs , 2015, 1511.06937.

[14]  Rongchan Zhu,et al.  Lattice approximation to the dynamical $\Phi_3^4$ model , 2015, 1508.05613.

[15]  N. Perkowski,et al.  KPZ Reloaded , 2015, 1508.03877.

[16]  Martin Hairer,et al.  The Dynamical Sine-Gordon Model , 2014, 1409.5724.

[17]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[18]  Pierluigi Falco,et al.  Critical exponents of the two dimensional Coulomb gas at the Berezinskii-Kosterlitz-Thouless transition , 2013, 1311.2237.

[19]  F. Otto,et al.  Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential , 2013, 1307.2338.

[20]  P. Cattiaux,et al.  Semi Log-Concave Markov Diffusions , 2013, 1303.6884.

[21]  P. Falco Kosterlitz-Thouless Transition Line for the Two Dimensional Coulomb Gas , 2011, 1104.1974.

[22]  R. McCann,et al.  Ricci flow, entropy and optimal transportation , 2010 .

[23]  Allan Sly,et al.  Cutoff for the Ising model on the lattice , 2009, 0909.4320.

[24]  Maria G. Westdickenberg,et al.  A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit , 2009 .

[25]  J. Lott Optimal transport and Perelman’s reduced volume , 2008, 0804.0343.

[26]  V. Mastropietro,et al.  Massless Sine-Gordon and Massive Thirring Models: Proof of Coleman’s Equivalence , 2007, 0711.5010.

[27]  Donald Babbitt,et al.  An Initiation to Logarithmic Sobolev Inequalities , 2007 .

[28]  Maria G. Reznikoff,et al.  A new criterion for the logarithmic Sobolev inequality and two applications , 2007 .

[29]  C. Kopper Renormalization Theory Based on Flow Equations , 2005, hep-th/0508143.

[30]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[31]  T. Hurd,et al.  Sine-Gordon Revisited , 1999, math-ph/9907017.

[32]  J. Dimock Bosonization of Massive Fermions , 1998 .

[33]  T. Hurd,et al.  Estimates on Renormalization Group Transformations , 1998, Canadian Journal of Mathematics.

[34]  H. Yau Logarithmic Sobolev inequality for lattice gases with mixing conditions , 1996 .

[35]  T. Hurd,et al.  Construction of the two-dimensional sine-Gordon model for β<8π , 1993 .

[36]  T. Hurd,et al.  A renormalization group analysis of the Kosterlitz-Thouless phase , 1991 .

[37]  C. Itzykson,et al.  Statistical Field Theory , 1989 .

[38]  Wei-Shih Yang Debye screening for two-dimensional Coulomb systems at high temperatures , 1987 .

[39]  T. Kennedy,et al.  Mayer expansions and the Hamilton-Jacobi equation , 1987 .

[40]  D. Brydges Convergence of Mayer expansions , 1986 .

[41]  J. Renn,et al.  On the massive sine-Gordon equation in all regions of collapse , 1985 .

[42]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[43]  G. Benfatto,et al.  On the massive sine-Gordon equation in the first few regions of collapse , 1982 .

[44]  G. Mack,et al.  Iterated Mayer expansion for classical gases at low temperatures , 1981 .

[45]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[46]  S. Coleman Quantum sine-Gordon equation as the massive Thirring model , 1975 .

[47]  J. Fröhlich Quantized "Sine-Gordon" Equation with a Nonvanishing Mass Term in Two Space-Time Dimensions , 1975 .

[48]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[49]  A. Houghton,et al.  Renormalization group equation for critical phenomena , 1973 .

[50]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[51]  Rongchan Zhu,et al.  Lattice approximation to the dynamical Φ 43 model ∗ , 2016 .

[52]  Gregory F. Lawler,et al.  Random Walk: A Modern Introduction , 2010 .

[53]  D. Bakry Functional Inequalities for Markov semigroups , 2009 .

[54]  RICCI FLOW,et al.  RICCI FLOW , 2008 .

[55]  C. Landim,et al.  Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems , 2002 .

[56]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities for Unbounded Spin Systems Revisited , 2001 .

[57]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[58]  F. Martinelli Lectures on Glauber dynamics for discrete spin models , 1999 .

[59]  Y. Levin,et al.  On the absence of intermediate phases in the two-dimensional Coulomb gas , 1995 .

[60]  C. Itzykson,et al.  From Brownian motion to renormalization and lattice gauge theory , 1989 .

[61]  J. Imbrie Iterated Mayer Expansions and Their Application to Coulomb Gases , 1983 .

[62]  G. Mack,et al.  Proof of confinement of static quarks in 3-dimensionalU(1) lattice gauge theory for all values of the coupling constant , 1982 .

[63]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[64]  P. Federbush,et al.  Debye screening , 1980 .

[65]  J. Fröhlich,et al.  The Massive Thirring-Schwinger Model (QED in Two-Dimensions): Convergence of Perturbation Theory and Particle Structure , 1976 .

[66]  P. Federbush Partially Alternate Derivation of a Result of Nelson , 1969 .

[67]  Y. Katznelson An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .

[68]  G. Gallavotti,et al.  On the Massive Sine-gordon Equation in the First Few Regions of Collapse , 2022 .