Application of the renormalization-group method to the reduction of transport equations

We first give a comprehensive review of the renormalization-group method for global and asymptotic analysis, putting an emphasis on the relevance to the classical theory of envelopes and on the importance of the existence of invariant manifolds of the dynamics under consideration. We clarify that an essential point of the method is to convert the problem from solving differential equations to obtaining suitable initial (or boundary) conditions: the RG equation determines the slow motion of the would-be integral constants in the unperturbative solution on the invariant manifold. The RG method is applied to derive the Navier–Stokes equation from the Boltzmann equation, as an example of the reduction of dynamics. We work out how to obtain the transport coefficients in terms of the one-body distribution function.

[1]  David Gladstone Review article , 2005, Health Care Analysis.

[2]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[3]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[4]  Dynamical Reduction of Discrete Systems Based on the Renormalization Group Method , 1997, patt-sol/9705003.

[5]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .

[6]  Shin-ichiro Ei,et al.  Renormalization-Group Method for Reduction of Evolution Equations; Invariant Manifolds and Envelopes , 2000 .

[7]  Kenneth G. Wilson,et al.  Renormalization Group and Strong Interactions , 1971 .

[8]  T. Kunihiro A geometrical formulation of the renormalization group method for global analysis II: Partial differential equations , 1995, patt-sol/9508001.

[9]  A geometrical formulation of the renormalization group method for global analysis II: Partial differential equations , 1995, patt-sol/9508001.

[10]  P. Resibois,et al.  On linearized hydrodynamic modes in statistical physics , 1970 .

[11]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[12]  Antti Kupiainen,et al.  Renormalization Group and the Ginzburg-Landau equation , 1992 .

[13]  Renormalization Group Method Applied to Kinetic Equations: Roles of Initial Values and Time , 2001, hep-th/0108159.

[14]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[15]  Oono,et al.  Renormalization group theory for global asymptotic analysis. , 1994, Physical review letters.

[16]  M. Gell-Mann,et al.  QUANTUM ELECTRODYNAMICS AT SMALL DISTANCES , 1954 .

[17]  Oono,et al.  Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  L. Reichl A modern course in statistical physics , 1980 .

[19]  M. Suzuki,et al.  Statistical mechanical theory of cooperative phenomena. I: General theory of fluctuations, coherent anomalies and scaling exponents with simple applications to critical phenomena , 1986 .

[20]  D. T. Son,et al.  Dynamic universality class of the QCD critical point , 2004 .

[21]  G. Uhlenbeck,et al.  Studies in statistical mechanics , 1962 .

[22]  A. Houghton,et al.  Renormalization group equation for critical phenomena , 1973 .

[23]  The Renormalization-Group Method Applied to Asymptotic Analysis,of Vector Fields , 1996, hep-th/9609045.

[24]  M. Stephanov,et al.  Signatures of the Tricritical Point in QCD , 1998, hep-ph/9806219.

[25]  R. Balescu Equilibrium and Nonequilibrium Statistical Mechanics , 1991 .

[26]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[27]  Y. Kuramoto On the Reduction of Evolution Equations in Extended Systems , 1989 .

[28]  S. Weinberg The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .

[29]  A. Petermann,et al.  La normalisation des constantes dans la théorie des quanta , 1952 .