IGA-PD Penalty-Based Coupling for Immersed Air-Blast Fluid-Structure Interaction: A Simple and Effective Solution for Fracture and Fragmentation

We present a novel formulation for the immersed coupling of isogeometric analysis and peridynamics for the simulation of fluid–structure interaction (FSI). We focus on air-blast FSI and address the computational challenges of immersed FSI methods in the simulation of fracture and fragmentation by developing a weakly volume-coupled FSI formulation by means of a simple penalty approach. We show the mathematical formulation and present several numerical examples of inelastic ductile and brittle solids under blast loading that clearly demonstrate the power and robustness of the proposed methodology.

[1]  F. Bobaru,et al.  A peridynamic model for brittle damage and fracture in porous materials , 2019, International Journal of Rock Mechanics and Mining Sciences.

[2]  Guillermo Hauke,et al.  Simple stabilizing matrices for the computation of compressible flows in primitive variables , 2001 .

[3]  C. Farhat International Journal for Numerical Methods in Engineering , 2019 .

[4]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[5]  Yuri Bazilevs,et al.  A Unified, Stable and Accurate Meshfree Framework for Peridynamic Correspondence Modeling—Part I: Core Methods , 2020, Journal of Peridynamics and Nonlocal Modeling.

[6]  John T. Foster,et al.  A semi-Lagrangian constitutive correspondence framework for peridynamics , 2020 .

[7]  John A. Evans,et al.  Isogeometric Analysis , 2010 .

[8]  C. C. Long,et al.  IGA-MPM: The Isogeometric Material Point Method , 2020 .

[9]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing , 2006 .

[10]  T. J. Vogler,et al.  Peridynamics Modeling of a Shock Wave Perturbation Decay Experiment in Granular Materials with Intra-granular Fracture , 2018, Journal of Dynamic Behavior of Materials.

[11]  John A. Evans,et al.  Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.

[12]  Yuri Bazilevs,et al.  A Unified, Stable, and Accurate Meshfree Framework for Peridynamic Correspondence Modeling—Part II: Wave Propagation and Enforcement of Stress Boundary Conditions , 2020, Journal of Peridynamics and Nonlocal Modeling.

[13]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[14]  Yuri Bazilevs,et al.  A General-Purpose, Inelastic, Rotation-Free Kirchhoff-Love Shell Formulation for Peridynamics , 2021, Computer Methods in Applied Mechanics and Engineering.

[15]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[16]  Yuri Bazilevs,et al.  Coupling of IGA and Peridynamics for Air-Blast Fluid-Structure Interaction Using an Immersed Approach , 2021, Forces in Mechanics.

[17]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[18]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[19]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[20]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[21]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[22]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[23]  Li-ping Li,et al.  Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation , 2020 .

[24]  Kaushik Dayal,et al.  Bond-level deformation gradients and energy averaging in peridynamics , 2018 .

[25]  Y. Bazilevs,et al.  An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis , 2021 .

[26]  Guanfeng Zhang,et al.  Why do cracks branch? A peridynamic investigation of dynamic brittle fracture , 2015, International Journal of Fracture.

[27]  James W. Foulk,et al.  The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal , 2019, International Journal of Fracture.

[28]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[29]  Marco Pasetto,et al.  Generalized reproducing kernel peridynamics: unification of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order state-based peridynamic formulation , 2020, Computational Particle Mechanics.

[30]  John T. Foster,et al.  The third Sandia Fracture Challenge: peridynamic blind prediction of ductile fracture characterization in additively manufactured metal , 2019, International Journal of Fracture.

[31]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[32]  Anindya Ghoshal,et al.  Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling , 2017 .

[33]  Thomas J. R. Hughes,et al.  A comparative study of different sets of variables for solving compressible and incompressible flows , 1998 .

[34]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[35]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[36]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[37]  Thomas J. R. Hughes,et al.  Stabilized Methods for Compressible Flows , 2010, J. Sci. Comput..

[38]  Yuri Bazilevs,et al.  Gas turbine computational flow and structure analysis with isogeometric discretization and a complex-geometry mesh generation method , 2020 .

[39]  Yuri Bazilevs,et al.  Consistent immersed volumetric Nitsche methods for composite analysis , 2021 .

[40]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[41]  M. Berzins,et al.  Analysis and reduction of quadrature errors in the material point method (MPM) , 2008 .

[42]  Y. Bazilevs,et al.  Hyperbolic phase field modeling of brittle fracture: Part I—Theory and simulations , 2018, Journal of the Mechanics and Physics of Solids.

[43]  Yuri Bazilevs,et al.  Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling , 2017, Comput. Math. Appl..

[44]  Ming-Chen Hsu,et al.  An immersogeometric formulation for free-surface flows with application to marine engineering problems , 2020 .

[45]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[46]  Eugenio Oñate,et al.  A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations , 2017 .

[47]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[48]  Sahir N. Butt,et al.  Peridynamic analysis of dynamic fracture: influence of peridynamic horizon, dimensionality and specimen size , 2021, Computational Mechanics.

[49]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[50]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[51]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[52]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[53]  Masoud Behzadinasab,et al.  Peridynamic modeling of large deformation and ductile fracture , 2019 .

[54]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[55]  T. Tezduyar,et al.  Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and $$YZ\beta $$YZβ shock-capturing , 2015 .

[56]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[57]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[58]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the V-SGS Stabilization and YZβ Shock-Capturing , 2009 .

[59]  Yuri Bazilevs,et al.  A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations , 2017 .

[60]  Y. Bazilevs,et al.  Hyperbolic phase field modeling of brittle fracture: Part II—immersed IGA–RKPM coupling for air-blast–structure interaction , 2018, Journal of the Mechanics and Physics of Solids.

[61]  Ziguang Chen,et al.  Peridynamic Modeling of Intergranular Corrosion Damage , 2018 .