β-Turn editing in Gramicidin S: Activity impact on replacing proline α-carbon with stereodynamic nitrogen.

[1]  R. S. Ampapathi,et al.  Influence of Proline Chirality on Neighbouring Azaproline Residue Stereodynamic Nitrogen Preorganization. , 2022, Chemistry, an Asian journal.

[2]  S. Chopra,et al.  Bio-evaluation of fluoro and trifluoromethyl-substituted salicylanilides against multidrug-resistant S. aureus , 2021, Medicinal Chemistry Research.

[3]  D. Obrecht,et al.  Murepavadin antimicrobial activity against and resistance development in cystic fibrosis Pseudomonas aeruginosa isolates. , 2020, The Journal of antimicrobial chemotherapy.

[4]  T. Eckmanns,et al.  The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections , 2020, Emerging microbes & infections.

[5]  R. Duman,et al.  Rapastinel, a novel glutamatergic agent with ketamine-like antidepressant actions: Convergent mechanisms , 2019, Pharmacology Biochemistry and Behavior.

[6]  N. J. Porter,et al.  Aza-proline effectively mimics l-proline stereochemistry in triple helical collagen† †Electronic supplementary information (ESI) available: A detailed explanation of all procedures for synthesis, purification, characterization, crystallography, and computational analysis. See DOI: 10.1039/c9sc02211b , 2019, Chemical science.

[7]  Yi Jin,et al.  Recent Advances in the Exploration of Therapeutic Analogues of Gramicidin S, an Old but Still Potent Antimicrobial Peptide. , 2019, Journal of medicinal chemistry.

[8]  H. Wennemers,et al.  γ-Azaproline Confers pH Responsiveness and Functionalizability on Collagen Triple Helices. , 2019, Angewandte Chemie.

[9]  A. Ulrich,et al.  Structure-Activity Relationships of Photoswitchable Diarylethene-Based β-Hairpin Peptides as Membranolytic Antimicrobial and Anticancer Agents. , 2018, Journal of medicinal chemistry.

[10]  A. Abell,et al.  Photopharmacological Control of Cyclic Antimicrobial Peptides , 2018, Chembiochem : a European journal of chemical biology.

[11]  S. Zirah,et al.  β,γ-diamino acids as building blocks for new analogues of Gramicidin S: Synthesis and biological activity. , 2018, European journal of medicinal chemistry.

[12]  G. Marshall,et al.  Design, synthesis, and biological evaluation of stable β6.3-Helices: Discovery of non-hemolytic antibacterial peptides. , 2018, European journal of medicinal chemistry.

[13]  D. Spring,et al.  Using Peptidomimetics and Constrained Peptides as Valuable Tools for Inhibiting Protein–Protein Interactions , 2018, Molecules.

[14]  G. Dale,et al.  Murepavadin: a new antibiotic class in the pipeline , 2018, Expert review of anti-infective therapy.

[15]  P. R. Rajamohanan,et al.  Conformational studies of Ant–Pro motif-incorporated cyclic peptides: gramicidin S and avellanin , 2018 .

[16]  D. Fairlie,et al.  Orally Absorbed Cyclic Peptides. , 2017, Chemical reviews.

[17]  P. Stanton,et al.  The Development of Rapastinel (Formerly GLYX-13); A Rapid Acting and Long Lasting Antidepressant , 2016, Current Neuropharmacology.

[18]  A. Ulrich,et al.  Therapeutic Potential of Gramicidin S in the Treatment of Root Canal Infections , 2016, Pharmaceuticals.

[19]  D. Chenoweth,et al.  A Single Stereodynamic Center Modulates the Rate of Self-Assembly in a Biomolecular System. , 2015, Angewandte Chemie.

[20]  U. Baumann,et al.  Structural Basis of Proline-Proline Peptide Bond Specificity of the Metalloprotease Zmp1 Implicated in Motility of Clostridium difficile. , 2015, Structure.

[21]  A. Lambeir,et al.  The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis , 2015, Front. Immunol..

[22]  Frank Wien,et al.  Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy , 2015, Proceedings of the National Academy of Sciences.

[23]  E. Prabhakaran,et al.  Crystal-structure analysis of cis-X-Pro-containing peptidomimetics: understanding the steric interactions at cis X-Pro amide bonds. , 2013, Angewandte Chemie.

[24]  John A. Robinson Max Bergmann lecture Protein epitope mimetics in the age of structural vaccinology , 2013, Journal of peptide science : an official publication of the European Peptide Society.

[25]  D. Raoult,et al.  Prospects for the future using genomics and proteomics in clinical microbiology. , 2011, Annual review of microbiology.

[26]  R. Thirupathi,et al.  Accessing the disallowed conformations of peptides employing amide-to-imidate modification. , 2011, Chemical communications.

[27]  H. Overkleeft,et al.  Evaluation of Readily Accessible Azoles as Mimics of the Aromatic Ring of D‐Phenylalanine in the Turn Region of Gramicidin S , 2011, ChemMedChem.

[28]  C. Cativiela,et al.  Sequence inversion and phenylalanine surrogates at the beta-turn enhance the antibiotic activity of gramicidin S. , 2010, Journal of medicinal chemistry.

[29]  H. Overkleeft,et al.  Synthesis and biological evaluation of asymmetric gramicidin S analogues containing modified D-phenylalanine residues. , 2009, Bioorganic & medicinal chemistry.

[30]  A. Belashov,et al.  Optimization of antimicrobial drug gramicidin S dosing regime using biosimulations. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[31]  A. Aubry,et al.  Azaproline as a β‐turn‐inducer residue opposed to proline , 2009 .

[32]  A Aubry,et al.  X-ray structures of aza-proline-containing peptides. , 2009, The journal of peptide research : official journal of the American Peptide Society.

[33]  R. Hodges,et al.  Gramicidin S is active against both gram-positive and gram-negative bacteria. , 2009, International journal of peptide and protein research.

[34]  John A. Robinson Beta-hairpin peptidomimetics: design, structures and biological activities. , 2008, Accounts of chemical research.

[35]  Byung Jin Byun,et al.  Conformational preferences and cis-trans isomerization of azaproline residue. , 2007, The journal of physical chemistry. B.

[36]  Garland R Marshall,et al.  Impact of azaproline on Peptide conformation. , 2004, The Journal of organic chemistry.

[37]  Mark J van Raaij,et al.  An unusual reverse turn structure adopted by a furanoid sugar amino acid incorporated in gramicidin S. , 2004, Journal of the American Chemical Society.

[38]  H. Overkleeft,et al.  Synthesis and biological evaluation of novel turn-modified gramicidin S analogues. , 2003, Bioorganic & medicinal chemistry.

[39]  Garland R Marshall,et al.  Impact of azaproline on amide cis-trans isomerism: conformational analyses and NMR studies of model peptides including TRH analogues. , 2003, Journal of the American Chemical Society.

[40]  B. M. Jimenez,et al.  IBTM-Containing Gramicidin S Analogues: Evidence for IBTM as a Suitable Type II‘ β-Turn Mimetic1,2 , 1997 .

[41]  R. Hodges,et al.  Modulation of Structure and Antibacterial and Hemolytic Activity by Ring Size in Cyclic Gramicidin S Analogs* , 1996, The Journal of Biological Chemistry.

[42]  Alain Lecoq,et al.  Crystal state conformation of three azapeptides containing the Azaproline residue, a β‐turn regulator , 1993 .

[43]  G. F. Gause,et al.  Gramicidin S and its use in the Treatment of Infected Wounds , 1944, Nature.

[44]  Arifa Begum,et al.  A Review on Azapeptides: The Promising Peptidomimetics , 2017 .

[45]  S. Edström,et al.  A randomized clinical trial of two topical preparations (framycitin/gramicidin and oxytetracycline/ hydrocortisone with polymyxin B) in the treatment of external otitis , 2004, Archives of oto-rhino-laryngology.