Pseudo-relevance feedback diversification of social image retrieval results

In this paper we introduce a novel pseudo-relevance feedback (RF) perspective to social image search results diversification. Traditional RF techniques introduce the user in the processing loop by harvesting feedback about the relevance of the query results. This information is used for recomputing a better representation of the needed data. The novelty of our work is in exploiting the automatic generation of user feedback in a completely unsupervised diversification scenario, where positive and negative examples are used to generate better representations of visual classes in the data. First, user feedback is simulated automatically by selecting positive and negative examples from the initial query results. Then, an unsupervised hierarchical clustering is used to re-group images according to their content. Diversification is finally achieved with a re-ranking approach of the previously achieved clusters. Experimental validation on real-world data from Flickr shows the benefits of this approach achieving very promising results.

[1]  Mohammad Soleymani,et al.  Crowdsourcing for Affective Annotation of Video: Development of a Viewer-reported Boredom Corpus , 2010 .

[2]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[3]  Gerhard Weikum,et al.  Gathering and ranking photos of named entities with high precision, high recall, and diversity , 2010, WSDM '10.

[4]  Henning Müller,et al.  Div400: a social image retrieval result diversification dataset , 2014, MMSys '14.

[5]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Henning Müller,et al.  Benchmarking result diversification in social image retrieval , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[7]  Henning Müller,et al.  Overview of the ImageCLEF 2013 Medical Tasks , 2013, CLEF.

[8]  Maia Zaharieva,et al.  MIS @ Retrieving Diverse Social Images Task 2015 , 2015, MediaEval.

[9]  Matti Pietikäinen,et al.  Performance evaluation of texture measures with classification based on Kullback discrimination of distributions , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[10]  Sihem Amer-Yahia,et al.  Efficient Computation of Diverse Query Results , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[11]  Maia Zaharieva,et al.  A Unified Framework for Retrieving Diverse Social Images , 2014, MediaEval.

[12]  W. Bruce Croft,et al.  Diversity by proportionality: an election-based approach to search result diversification , 2012, SIGIR '12.

[13]  Glen Van Brummelen,et al.  Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry , 2012 .

[14]  Xiaojin Zhu,et al.  Improving Diversity in Ranking using Absorbing Random Walks , 2007, NAACL.

[15]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[16]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[17]  Sourav S. Bhowmick,et al.  Image tag clarity: in search of visual-representative tags for social images , 2009, WSM@MM.

[18]  Benjamin King Step-Wise Clustering Procedures , 1967 .

[19]  Stephen E. Robertson,et al.  Selecting good expansion terms for pseudo-relevance feedback , 2008, SIGIR '08.

[20]  Pinar Duygulu Sahin,et al.  Bilkent-RETINA at Retrieving Diverse Social Images Task of MediaEval 2014 , 2014, MediaEval.

[21]  Wei-Ying Ma,et al.  Hierarchical clustering of WWW image search results using visual, textual and link information , 2004, MULTIMEDIA '04.

[22]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[23]  Divesh Srivastava,et al.  On query result diversification , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[24]  Henning Müller,et al.  Result diversification in social image retrieval: a benchmarking framework , 2014, Multimedia Tools and Applications.

[25]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[26]  Ana M. García-Serrano,et al.  UNED-UV @ Retrieving Diverse Social Images Task , 2015, MediaEval.

[27]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[28]  Henning Müller,et al.  Div150Cred: A social image retrieval result diversification with user tagging credibility dataset , 2015, MMSys.

[29]  Ana M. García-Serrano,et al.  UNED @ Retrieving Diverse Social Images Task , 2014, MediaEval.

[30]  Shuang Liang,et al.  Sketch retrieval and relevance feedback with biased SVM classification , 2008, Pattern Recognit. Lett..

[31]  Frann Cois Denis,et al.  PAC Learning from Positive Statistical Queries , 1998, ALT.

[32]  Stevan Rudinac,et al.  Generating Visual Summaries of Geographic Areas Using Community-Contributed Images , 2013, IEEE Transactions on Multimedia.

[33]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[34]  Chokri Ben Amar,et al.  Adaptive diversification for tag-based social image retrieval , 2014, International Journal of Multimedia Information Retrieval.

[35]  Philip S. Yu,et al.  Partially Supervised Classification of Text Documents , 2002, ICML.

[36]  Liujuan Cao,et al.  Weakly supervised topic grouping of YouTube search results , 2012, 2012 19th IEEE International Conference on Image Processing.

[37]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[38]  Claudio Gutierrez,et al.  Survey of graph database models , 2008, CSUR.

[39]  Ximena Olivares,et al.  Visual diversification of image search results , 2009, WWW '09.

[40]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[41]  Giorgio Giacinto,et al.  A nearest-neighbor approach to relevance feedback in content based image retrieval , 2007, CIVR '07.

[42]  Yi Yang,et al.  A Multimedia Retrieval Framework Based on Semi-Supervised Ranking and Relevance Feedback , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Adrian Popescu CEA LIST's Participation at MediaEval 2013 Placing Task , 2013, MediaEval.

[44]  Luc Van Gool,et al.  ETH-CVL @ MediaEval 2015: Learning Objective Functions for Improved Image Retrieval , 2015, MediaEval.

[45]  Nicu Sebe,et al.  Integrating Relevance Feedback in Boosting for Content-Based Image Retrieval , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[46]  Xiangyang Wang,et al.  Active SVM-based relevance feedback using multiple classifiers ensemble and features reweighting , 2013, Eng. Appl. Artif. Intell..

[47]  Mark Sanderson,et al.  Diversity in Photo Retrieval: Overview of the ImageCLEFPhoto Task 2009 , 2009, CLEF.

[48]  Kam-Fai Wong,et al.  Interpreting TF-IDF term weights as making relevance decisions , 2008, TOIS.

[49]  Georges Quénot,et al.  TRECVID 2015 - An Overview of the Goals, Tasks, Data, Evaluation Mechanisms and Metrics , 2011, TRECVID.

[50]  S. Chitrakala,et al.  Association Based Image Retrieval: A Survey , 2012, IAIT 2012.

[51]  Yiannis Kompatsiaris,et al.  Improving Diversity in Image Search via Supervised Relevance Scoring , 2015, ICMR.

[52]  Ling Shao,et al.  Content-based retrieval of human actions from realistic video databases , 2013, Inf. Sci..

[53]  Xiaoou Tang,et al.  Texture information in run-length matrices , 1998, IEEE Trans. Image Process..

[54]  Jurandy Almeida,et al.  Recod @ MediaEval 2016: Diverse Social Images Retrieval , 2016, MediaEval.

[55]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[56]  Ophir Frieder,et al.  Repeatable evaluation of search services in dynamic environments , 2007, TOIS.

[57]  Urbano Nunes,et al.  Trainable classifier-fusion schemes: An application to pedestrian detection , 2009, 2009 12th International IEEE Conference on Intelligent Transportation Systems.

[58]  Bogdan Ionescu,et al.  Retrieving Diverse Social Images at MediaEval 2017: Challenges, Dataset and Evaluation , 2017, MediaEval.

[59]  Teruko Mitamura,et al.  Zero-Example Event Search using MultiModal Pseudo Relevance Feedback , 2014, ICMR.

[60]  Simone Palazzo,et al.  PeRCeiVe Lab@UNICT at MediaEval 2014 Diverse Images: Random Forests for Diversity-based Clustering , 2014, MediaEval.

[61]  Yiming Yang,et al.  Translingual Information Retrieval: A Comparative Evaluation , 1997, IJCAI.

[62]  Rong Yan,et al.  Multimedia Search with Pseudo-relevance Feedback , 2003, CIVR.

[63]  Henning Müller,et al.  Retrieving Diverse Social Images at MediaEval 2015 , 2015 .

[64]  Ricardo da Silva Torres,et al.  Using contextual spaces for image re-ranking and rank aggregation , 2012, Multimedia Tools and Applications.

[65]  Bogdan Ionescu,et al.  Hierarchical clustering pseudo-relevance feedback for social image search result diversification , 2015, 2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI).

[66]  Francesco G. B. De Natale,et al.  A hybrid approach for retrieving diverse social images of landmarks , 2015, 2015 IEEE International Conference on Multimedia and Expo (ICME).

[67]  Andrew Zisserman,et al.  Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.