A study to establish reasonable action limits for patient‐specific quality assurance in intensity‐modulated radiation therapy

An effective patient quality assurance (QA) program for intensity‐modulated radiation therapy (IMRT) requires accurate and realistic plan acceptance criteria—that is, action limits. Based on dose measurements performed with a commercially available two‐dimensional (2D) diode array, we analyzed 747 fluence maps resulting from a routine patient QA program for IMRT plans. The fluence maps were calculated by three different commercially available (ADAC, CMS, Eclipse) treatment planning systems (TPSs) and were delivered using 6‐MV X‐ray beams produced by linear accelerators. To establish reasonably achievable and clinically acceptable limits for the dose deviations, the agreement between the measured and calculated fluence maps was evaluated in terms of percent dose error (PDE) for a few points and percent of passing points (PPP) for the isodose distribution. The analysis was conducted for each TPS used in the study (365 ADAC, 162 CMS, 220 Eclipse), for multiple treatment sites (prostate, pelvis, head and neck, spine, rectum, anus, lung, brain), at the normalization point for 3% percentage difference (%Diff) and 3‐mm distance to agreement (DTA) criteria. We investigated the treatment‐site dependency of PPP and PDE. The results show that, at 3% and 3‐mm criteria, a 95% PPP and 3% PDE can be achieved for prostate treatments and a 90% PPP and 5% PDE are attainable for any treatment site. PACS Numbers: 87.53Dq, 87.53Tf, 87.53Xd, 87.56Fc

[1]  M. Oldham,et al.  Evaluation of a 2D diode array for IMRT quality assurance. , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[2]  P. Jursinic,et al.  A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery. , 2003, Medical physics.

[3]  James F Dempsey,et al.  Validation of dynamic MLC-controller log files using a two-dimensional diode array. , 2003, Medical physics.

[4]  Cedric X. Yu,et al.  Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. , 2003, Medical physics.

[5]  D. Rogers,et al.  AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. , 1999, Medical physics.

[6]  J. Palta,et al.  Comprehensive QA for radiation oncology: report of AAPM Radiation Therapy Committee Task Group 40. , 1994, Medical physics.

[7]  A. Sethi,et al.  Comparison of ionization chambers of various volumes for IMRT absolute dose verification. , 2003, Medical physics.

[8]  I. Chetty,et al.  Dosimetric comparison of extended dose range film with ionization measurements in water and lung equivalent heterogeneous media exposed to megavoltage photons , 2003, Journal of applied clinical medical physics.

[9]  Lei Dong,et al.  Patient-specific point dose measurement for IMRT monitor unit verification. , 2003, International journal of radiation oncology, biology, physics.

[10]  Eric R. Ziegel,et al.  Probability and Statistics for Engineering and the Sciences , 2004, Technometrics.