Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy

Positive and negative streamers are studied in ambient air at 1 bar; they emerge from a needle electrode placed 40 mm above a planar electrode. The amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses have rise times of 30 ns or shorter. Diameters, velocities and energies of the streamers are measured. Two regimes are identified; a low voltage regime where only positive streamers appear and a high voltage regime where both positive and negative streamers exist. Below 5 kV, no streamers emerge. In the range from 5 to 40 kV, positive streamers form, while the negative discharges only form a glowing cloud at the electrode tip, but no streamers. For 5–20 kV, diameters and velocities of the positive streamers have the minimal values of d = 0.2 mm and v ≈ 105 m s−1. For 20–40 kV, their diameters increase by a factor of 6 while the voltage increases only by a factor of 2. Above the transition value of 40 kV, streamers of both polarities form; they strongly resemble each other, though the positive ones propagate further; their diameters continue to increase with applied voltage. For 96 kV, positive streamers attain diameters of 3 mm and velocities of 4 × 106 m s−1; negative streamers are about 20% slower and thinner. An empirical fit formula for the relation between velocity v and diameter d is v = 0.5d2 mm−1 ns−1 for both polarities. Streamers of both polarities dissipate energies of the order of several millijoules per streamer while crossing the gap.

[1]  P. Williams,et al.  Experimental study of streamers in pure N2 and N2/O2 mixtures and a ≈13 cm gap , 2002 .

[2]  V. Veldhuizen,et al.  Pulsed positive corona streamer propagation and branching , 2002 .

[3]  van Ejm Bert Heesch,et al.  Long lifetime, triggered, spark-gap switch for repetitive pulsed power applications , 2005 .

[4]  U. Ebert,et al.  Positive streamers in air and nitrogen of varying density: experiments on similarity laws , 2008, 0805.1364.

[5]  B. Gravendeel Negative corona discharges : a fundamental study , 1987 .

[6]  E. Marode,et al.  The mechanism of spark breakdown in air at atmospheric pressure between a positive point and a plane. I. Experimental: Nature of the streamer track , 1975 .

[7]  R. Ono,et al.  Spatial distribution of ozone density in pulsed corona discharges observed by two-dimensional laser absorption method , 2004 .

[8]  W. Hundsdorfer,et al.  Photoionization in negative streamers: Fast computations and two propagation modes , 2006, physics/0609247.

[9]  Gjj Hans Winands Efficient streamer plasma generation , 2007 .

[10]  W. Hundsdorfer,et al.  The multiscale nature of streamers , 2006, physics/0604023.

[11]  van Ejm Bert Heesch,et al.  Evaluation of pulsed streamer corona experiments to determine the O* radical yield , 2008 .

[12]  E. Williams Problems in lightning physics—the role of polarity asymmetry , 2006 .

[13]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[14]  B. H. Crichton,et al.  Gas discharge physics , 1996 .

[15]  van Ejm Bert Heesch,et al.  Analysis of streamer properties in air as function of pulse and reactor parameters by ICCD photography , 2008 .

[16]  V. Veldhuizen,et al.  Inception behaviour of pulsed positive corona in several gases , 2003 .

[17]  Nickolay Aleksandrov,et al.  Temperature and density effects on the properties of a long positive streamer in air , 1996 .

[18]  K. Wagner Die Entwicklung der Elektronenlawine in den Plasmakanal, untersucht mit Bildverstärker und Wischverschluß , 1966 .

[19]  S. Starikovskaia,et al.  Role of photoionization processes in propagation of cathode-directed streamer , 2001 .

[20]  Y. Creyghton Pulsed positive corona discharges : fundamental study and application to flue gas treatment , 1994 .

[21]  F. Bastien,et al.  The determination of basic quantities during glow-to-arc transition in a positive point-to-plane discharge , 1979 .

[22]  van Ejm Bert Heesch,et al.  Multiple-gap spark gap switch , 2006 .

[23]  Tetsuji Oda,et al.  Measurement of gas temperature and OH density in the afterglow of pulsed positive corona discharge , 2008 .

[24]  U. Ebert,et al.  Time Resolved Measurements of Streamer Inception in Air , 2008, IEEE Transactions on Plasma Science.

[25]  R. F. Griffiths,et al.  Dependence of positive corona streamer propagation on air pressure and water vapor content , 1976 .

[26]  Marinus Albertus Vanhouten Electromagnetic compatibility in high-voltage engineering , 1990 .

[27]  Ningyu Liu,et al.  Effects of photoionization on propagation and branching of positive and negative streamers in sprites , 2004 .

[28]  N. L. Allen,et al.  The conditions required for the propagation of a cathode-directed positive streamer in air , 1995 .

[29]  S. Pancheshnyi,et al.  Discharge dynamics and the production of active particles in a cathode-directed streamer , 2000 .

[30]  S. Pancheshnyi,et al.  Development of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  S. Pancheshnyi Role of electronegative gas admixtures in streamer start, propagation and branching phenomena , 2005 .

[32]  Sergey Pancheshnyi,et al.  BRIEF COMMUNICATION: Stagnation dynamics of a cathode-directed streamer discharge in air , 2004 .

[33]  van Ejm Bert Heesch,et al.  Synchronization of multiple spark-gap switches by a transmission line transformer , 2005 .

[34]  K. Yan Corona plasma generation , 2001 .

[35]  E. M. Veldhuizen,et al.  Electrical discharges for environmental purposes : fundamentals and applications , 2000 .

[36]  A. Luque,et al.  Positive and negative streamers in ambient air: modelling evolution and velocities , 2008, 0804.3539.

[37]  U. Ebert,et al.  Stereo-photography of streamers in air , 2008, 0802.3639.

[38]  P. Blom High-power pulsed corona , 1997 .

[39]  W. Hundsdorfer,et al.  Interaction of streamer discharges in air and other oxygen-nitrogen mixtures. , 2007, Physical review letters.

[40]  S. Pancheshnyi,et al.  Two-dimensional numerical modelling of the cathode-directed streamer development in a long gap at high voltage , 2003 .

[41]  R. Ono,et al.  Formation and structure of primary and secondary streamers in positive pulsed corona discharge—effect of oxygen concentration and applied voltage , 2003 .

[42]  N. Spyrou,et al.  Spectroscopic study of a positive streamer in a point-to-plane discharge in air: evaluation of the electric field distribution , 1989 .

[43]  U. Ebert,et al.  Circuit dependence of the diameter of pulsed positive streamers in air , 2006 .

[44]  R. S. Sigmond The residual streamer channel: Return strokes and secondary streamers , 1984 .

[45]  van Ejm Bert Heesch,et al.  Temporal development and chemical efficiency of positive streamers in a large scale wire-plate reactor as a function of voltage waveform parameters , 2006 .

[46]  N. Babaeva,et al.  Dynamics of positive and negative streamers in air in weak uniform electric fields , 1997 .

[47]  A.J.M. Pemen,et al.  ADS and CDS Streamer Generation as Function of Pulse Parameters , 2008, IEEE Transactions on Plasma Science.