Reaction mechanism of soot formation in flames

Chemical reactions and physical processes responsible for the formation of polycyclic aromatic hydrocarbons and soot in hydrocarbon flames are reviewed. The discussion is focused on major elements in the present understanding of the phenomena, clarification of concepts central to the present state of the art, and a summary of new results.

[1]  R. A. Matula,et al.  Soot formation in shock-tube pyrolysis of acetylene, allene, and 1,3-butadiene , 1983 .

[2]  M. Frenklach,et al.  Calculations of rate coefficients for the chemically activated reactions of acetylene with vinylic and aromatic radicals , 1994 .

[3]  Fabian Mauss,et al.  Inception and growth of soot particles in dependence on the surrounding gas phase , 1994 .

[4]  W. H. Walton The Mechanics of Aerosols , 1966 .

[5]  M. Frenklach,et al.  A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames , 1997 .

[6]  D. E. Rosner,et al.  Prediction and correlation of accessible area of large multiparticle aggregates , 1994 .

[7]  E. Ranzi,et al.  The kinetic modeling of soot precursors in a butadiene flame , 2000 .

[8]  Mitchell D. Smooke,et al.  Computational and experimental study of soot formation in a coflow, laminar diffusion flame , 1999 .

[9]  Stephen E. Stein,et al.  High-temperature stabilities of hydrocarbons , 1985 .

[10]  Jack B. Howard,et al.  Simultaneous Particle and Molecule Modeling (SPAMM): An Approach for Combining Sectional Aerosol Equations and Elementary Gas-Phase Reactions , 1997 .

[11]  Jack B. Howard,et al.  Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways , 2000 .

[12]  John Kent,et al.  A computational study of hydrocarbon growth and the formation of aromatics in coflowing laminar diffusion flames of ethylene , 2001 .

[13]  A. Cooksy,et al.  Ab Initio Study of the Most Stable C4H5 Isomers , 1999 .

[14]  Ümit Özgür Köylü,et al.  Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times , 1992 .

[15]  D. Urban,et al.  Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure. Appendix H , 1998 .

[16]  L. Maurice,et al.  Thermodynamic and kinetic issues in the formation and oxidation of aromatic species. , 2001, Faraday discussions.

[17]  Robert J. Santoro,et al.  Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame , 1993 .

[18]  Henning Bockhorn,et al.  Soot Formation in Combustion: Mechanisms and Models , 1994 .

[19]  D. Urban,et al.  Structure of the Soot Growth Region of Laminar Premixed Methane/Oxygen Flames. Appendix I , 2000 .

[20]  K. M. Leung,et al.  A simplified reaction mechanism for soot formation in nonpremixed flames , 1991 .

[21]  Tiago L. Farias,et al.  Fractal and projected structure properties of soot aggregates , 1995 .

[22]  Michael Frenklach,et al.  Aerosol dynamics modeling using the method of moments , 1987 .

[23]  S. Harris,et al.  Determination of the Rate Constant for Soot Surface Growth , 1983 .

[24]  Adel F. Sarofim,et al.  A reaction pathway for nanoparticle formation in rich premixed flames , 2001 .

[25]  T. Truong,et al.  Quantum mechanical study of molecular weight growth process by combination of aromatic molecules , 2001 .

[26]  C. McEnally,et al.  An Experimental Study in Non-Premixed Flames of Hydrocarbon Growth Processes that Involve Five-Membered Carbon Rings , 1998 .

[27]  Michael Frenklach,et al.  A computational study of sooting limits in laminar premixed flames of ethane, ethylene, and acetylene☆ , 1993 .

[28]  Ian M. Kennedy,et al.  Predictions of soot in laminar diffusion flames , 1990 .

[29]  Ümit Özgür Köylü,et al.  Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Flames At Long Residence Times , 1994 .

[30]  S. Harris Surface Growth and Soot Particle Reactivity , 1990 .

[31]  H. F. Calcote Mechanisms of soot nucleation in flames—A critical review , 1981 .

[32]  Wang,et al.  Detailed surface and gas-phase chemical kinetics of diamond deposition. , 1991, Physical review. B, Condensed matter.

[33]  James A. Miller,et al.  Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels , 1992 .

[34]  Robert A. Fletcher,et al.  The evolution of soot precursor particles in a diffusion flame , 1998 .

[35]  P. R. Westmoreland,et al.  Forming benzene in flames by chemically activated isomerization , 1989 .

[36]  S. Senkan,et al.  Effect of Oxygen Addition on Polycyclic Aromatic Hydrocarbon Formation in 1,3 Butadiene Counter-Flow Diffusion Flames , 2001 .

[37]  K. Xie,et al.  Shock tube studies of gas phase reactions preceding the soot formation process , 1991 .

[38]  W. Lester,et al.  A quantum Monte Carlo study of energy differences in C4H3 and C4H5 isomers , 2001 .

[39]  Michael Frenklach,et al.  Computer modeling of infinite reaction sequences: A chemical lumping , 1985 .

[40]  G. Faeth,et al.  Soot formation in hydrocarbon/air laminar jet diffusion flames☆ , 1996 .

[41]  C. Dasch The decay of soot surface growth reactivity and its importance in total soot formation , 1985 .

[42]  H. Bockhorn,et al.  Soot Formation in Premixed Hydrocarbon Flames: Prediction of Temperature and Pressure Dependence , 1995 .

[43]  B. Haynes,et al.  Soot surface growth at active sites , 1991 .

[44]  M. Frenklach,et al.  Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames , 1998 .

[45]  Marco J. Castaldi,et al.  Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame , 1998 .

[46]  Ümit Özgür Köylü,et al.  Soot Morphology and Optical Properties in Nonpremixed Turbulent Flame Environments , 1995 .

[47]  M. Frenklach,et al.  On the relative contribution of acetylene and aromatics to soot particle surface growth , 1998 .

[48]  R. Lindstedt,et al.  Chemistry of Acetylene Flames , 1997 .

[49]  M. Braun-Unkhoff,et al.  Modeling Study on Soot Formation at High Pressures , 1999 .

[50]  Michael Frenklach,et al.  Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame , 1987 .

[51]  Ian M. Kennedy,et al.  Models of soot formation and oxidation , 1997 .

[52]  D. Urban,et al.  Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G , 1997 .

[53]  Robert F. Curl,et al.  Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot , 1986 .

[54]  L. B. Ebert,et al.  Comment on the proposed role of spheroidal carbon clusters in soot formation , 1988 .

[55]  J.-Y. Chen,et al.  A model for soot formation in a laminar diffusion flame , 1990 .

[56]  E. Feigelson,et al.  A New Mechanism for the Formation of Meteoritic Kerogen-Like Material , 1991, Science.

[57]  J. Lahaye,et al.  The concept of active sites applied to the study of carbon reactivity , 1989 .

[58]  M. Frenklach,et al.  Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar , 1995 .

[59]  A. M. Weiner,et al.  CHEMICAL KINETICS OF SOOT PARTICLE GROWTH , 1985 .

[60]  C. McEnally,et al.  Aromatic hydrocarbon formation in nonpremixed flames doped with diacetylene, vinylacetylene, and other hydrocarbons: evidence for pathways involving C4 species , 2000 .

[61]  D. E. Rosner,et al.  Fractal Morphology Analysis of Combustion-Generated Aggregates Using Angular Light Scattering and Electron Microscope Images , 1995 .

[62]  H. Bockhorn,et al.  Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons , 2000 .

[63]  G. M. Faeth,et al.  Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H , 2001 .

[64]  P. Walker Carbon: An old but new material revisited , 1990 .

[65]  D. W. Clary,et al.  Mechanism of Soot Formation in Acetylene-Oxygen Mixtures , 1986 .

[66]  Constantine M. Megaridis,et al.  Morphological Description of Flame-Generated Materials , 1990 .