Lunar gravity assists using patched-conics approximation, three and four body problems
暂无分享,去创建一个
Antonio F. B. A. Prado | Rodolfo Batista Negri | A. A. Sukhanov | R. B. Negri | A. Prado | A. Sukhanov
[1] S. Solomon,et al. The MESSENGER mission to Mercury: Development history and early mission status , 2006 .
[2] J. Dormand,et al. High order embedded Runge-Kutta formulae , 1981 .
[3] Yanping Guo,et al. New Horizons Mission Design , 2008 .
[4] Equivalent Delta-V per Orbit of Gravitational Perturbations , 2016 .
[5] Victor Szebehely,et al. Theory of Orbits. , 1967 .
[6] Elbert E. N. Macau,et al. The Aster project: Flight to a near-Earth asteroid , 2010 .
[7] Giovanni B. Valsecchi,et al. Outcomes of planetary close encounters: A systematic comparison of methodologies , 1988 .
[8] Antonio G. V. de Brum,et al. The aster mission: Exploring for the first time a triple system asteroid , 2011 .
[9] G. Valsecchi,et al. Conservation of the Tisserand parameter at close encounters of interplanetary objects with Jupiter , 1995 .
[10] S. Solomon,et al. An international program for Mercury exploration: synergy of MESSENGER and BepiColombo , 2004 .
[11] F. Topputo. On optimal two-impulse Earth–Moon transfers in a four-body model , 2013 .
[12] Ryan P. Russell,et al. Endgame Problem Part 2: Multibody Technique and the Tisserand-Poincare Graph , 2010 .
[13] Kazuyuki Yagasaki,et al. Sun-perturbed earth-to-moon transfers with low energy and moderate flight time , 2004 .
[14] P. A. Penzo,et al. Voyager mission description , 1977 .
[15] Jean-Pierre Lebreton,et al. The Cassini–Huygens flyby of Jupiter , 2004 .
[16] A. Prado. Numerical and analytical study of the gravitational capture in the bicircular problem , 2005 .
[17] Antonio F. B. A. Prado,et al. Studying the errors in the estimation of the variation of energy by the “patched-conics” model in the three-dimensional swing-by , 2017 .
[18] R. Broucke. The celestial mechanics of gravity assist , 1988 .
[19] A. Prado,et al. Sphere of influence and gravitational capture radius: a dynamical approach , 2008 .
[20] Andrea Carusi,et al. Planetary close encounters: geometry of approach and post-encounter orbital parameters , 1990 .
[21] A. F. Silva,et al. Powered Swing-By Maneuvers around the Moon , 2013 .
[22] Tadashi Yokoyama,et al. On the effects of each term of the geopotential perturbation along the time I: Quasi-circular orbits , 2014 .
[23] K. Nock,et al. Galileo Jupiter encounter and satellite tour trajectory design , 1979 .
[24] F. Topputo,et al. Transfers to distant periodic orbits around the Moon via their invariant manifolds , 2012 .
[25] K. Howell,et al. Mode Analysis for Long-Term Behavior in a Resonant Earth–Moon Trajectory , 2017 .
[26] M. Hechler,et al. ROSETTA mission design , 1997 .
[27] R. Carlson,et al. Pioneer 10 ultraviolet photometer observations at Jupiter encounter , 1974 .
[28] F. Topputo,et al. Ways to the Moon : A survey , 2011 .
[29] A. Prado. Searching for Orbits with Minimum Fuel Consumption for Station-Keeping Maneuvers: An Application to Lunisolar Perturbations , 2013 .
[30] Ryan P. Russell,et al. Optimization of low-energy resonant hopping transfers between planetary moons , 2009 .
[31] Shane D. Ross,et al. Multiple Gravity Assists, Capture, and Escape in the Restricted Three-Body Problem , 2007, SIAM J. Appl. Dyn. Syst..
[32] A. Prado. A comparison of the "patched-conics approach" and the restricted problem for swing-bys , 2006 .
[33] Ryan P. Russell,et al. Flybys in the planar, circular, restricted, three-body problem , 2012 .