An Efficient Algorithm for Mixed Domination on Generalized Series-Parallel Graphs

A mixed dominating set $S$ of a graph $G=(V,E)$ is a subset $ S \subseteq V \cup E$ such that each element $v\in (V \cup E) \setminus S$ is adjacent or incident to at least one element in $S$. The mixed domination number $\gamma_m(G)$ of a graph $G$ is the minimum cardinality among all mixed dominating sets in $G$. The problem of finding $\gamma_{m}(G)$ is know to be NP-complete. In this paper, we present an explicit polynomial-time algorithm to construct a mixed dominating set of size $\gamma_{m}(G)$ by a parse tree when $G$ is a generalized series-parallel graph.

[1]  Lonnie Athens ‘Domination’ , 2002 .

[2]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[3]  Tohru Kikuno,et al.  A linear algorithm for the domination number of a series-parallel graph , 1983, Discret. Appl. Math..

[4]  Jianfang Wang,et al.  On total covers of graphs , 1992, Discret. Math..

[5]  Yousef Alavi,et al.  Total matchings and total coverings of graphs , 1977, J. Graph Theory.

[6]  Gur Saran Adhar,et al.  Mixed Domination in Trees : A Parallel Algorithm , 2001 .

[7]  Russell Martin,et al.  Exact counting of Euler tours for generalized series-parallel graphs , 2012, J. Discrete Algorithms.

[8]  Yancai Zhao,et al.  The algorithmic complexity of mixed domination in graphs , 2011, Theor. Comput. Sci..

[9]  Aniket Majumdar,et al.  Neighborhood Hypergraphs: A Framework for Covering and Packing Parameters in Graphs , 1992 .

[10]  David Manlove,et al.  On the Algorithmic Complexity of Twelve Covering and Independence Parameters of Graphs , 1999, Discret. Appl. Math..

[11]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[12]  D. West Introduction to Graph Theory , 1995 .

[13]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[14]  Gerard J. Chang,et al.  On the mixed domination problem in graphs , 2013, Theor. Comput. Sci..

[15]  Michael J. Dinneen,et al.  On fixed-parameter tractability of the mixed domination problem for graphs with bounded tree-width , 2016, Discret. Math. Theor. Comput. Sci..