Searching for photon-sector Lorentz violation using gravitational-wave detectors

[1]  F. Pretorius,et al.  Theoretical Physics Implications of the Binary Black-Hole Merger GW150914 , 2016 .

[2]  M. Schreck Fermionic Lorentz violation and its implications for interferometric gravitational-wave detection , 2016, 1603.07452.

[3]  A. Kostelecký,et al.  Testing local Lorentz invariance with gravitational waves , 2016, 1602.04782.

[4]  S. Schiller,et al.  High-sensitivity crossed-resonator laser apparatus for improved tests of Lorentz invariance and of space-time fluctuations , 2016 .

[5]  M. Zanolin,et al.  Measuring violations of general relativity from single gravitational wave detection by nonspinning binary systems: Higher-order asymptotic analysis , 2015, 1509.02248.

[6]  C. S. Unnikrishnan,et al.  IndIGO and LIGO-India: Scope and Plans for Gravitational Wave Research and Precision Metrology in India , 2015, 1510.06059.

[7]  J. Tasson,et al.  Constraints on Lorentz violation from gravitational Čerenkov radiation , 2015, 1508.07007.

[8]  Henric Krawczynski,et al.  Search for anisotropic Lorentz invariance violation with γ -rays , 2015, 1505.02669.

[9]  Y. Bonder Lorentz violation in the gravity sector: The t puzzle , 2015, 1504.03636.

[10]  H. Häffner,et al.  Michelson–Morley analogue for electrons using trapped ions to test Lorentz symmetry , 2014, Nature.

[11]  A. Peters,et al.  Direct terrestrial test of Lorentz symmetry in electrodynamics to 10−18 , 2014, Nature Communications.

[12]  C. Hogan,et al.  Interferometric tests of Planckian quantum geometry models , 2014, 1410.8197.

[13]  A. Melissinos On the Possible Detection of Low Frequency Periodic Signals in Gravitational Wave Interferometers , 2014, 1410.0854.

[14]  J. Tasson,et al.  What do we know about Lorentz invariance? , 2014, Reports on progress in physics. Physical Society.

[15]  V. Rudenko,et al.  Low-frequency signals of large-scale gravitational-wave interferometers , 2013, 1310.3104.

[16]  M. Schreck Obtaining bounds from ultra-high energy cosmic rays in isotropic modified Maxwell theory , 2013, 1310.5159.

[17]  A. Freise,et al.  Finesse, Frequency domain INterferomEter Simulation SoftwarE , 2013, 1306.2973.

[18]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[19]  J. Tasson,et al.  Matter-gravity couplings and Lorentz violation , 2010, 1006.4106.

[20]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[21]  A. Kostelecký,et al.  Classical kinematics for Lorentz violation , 2010, 1008.5062.

[22]  A. Melissinos The effect of the Tides on the LIGO Interferometers , 2010, 1001.0558.

[23]  B. Altschul Bounding isotropic Lorentz violation using synchrotron losses at LEP , 2009, 0905.4346.

[24]  A. Kostelecký,et al.  Electrodynamics with Lorentz-violating operators of arbitrary dimension , 2009, 0905.0031.

[25]  D. Phillips,et al.  Particle-accelerator constraints on isotropic modifications of the speed of light. , 2009, Physical review letters.

[26]  D. Phillips,et al.  Limits on Isotropic Lorentz Violation in QED from Collider Physics , 2008, 0809.3442.

[27]  Alan Kostelecky,et al.  Astrophysical Tests of Lorentz and CPT Violation with Photons , 2008, 0809.2846.

[28]  G. Russo,et al.  The Virgo 3 km interferometer for gravitational wave detection , 2008 .

[29]  A. Kostelecký,et al.  Data Tables for Lorentz and CPT Violation , 2008, 0801.0287.

[30]  R. Lehnert Nonlocal on-shell field redefinition for the standard-model extension , 2006 .

[31]  B. Altschul Eliminating the CPT-odd f coefficient from the Lorentz-violating standard model extension , 2006, hep-th/0602235.

[32]  R. Bluhm Overview of the SME: Implications and phenomenology of Lorentz violation , 2005, hep-ph/0506054.

[33]  A. Kostelecký,et al.  Lorentz-Violating Electrostatics and Magnetostatics , 2004, hep-ph/0407252.

[34]  G. Sardin Testing Lorentz symmetry of special relativity by means of the Virgo or Ligo set-up, through the differential measure of the two orthogonal beams time-of-flight , 2004, physics/0404116.

[35]  A. Kostelecký Gravity, Lorentz violation, and the standard model , 2003, hep-th/0312310.

[36]  G. Amelino-Camelia,et al.  Quantum-gravity-motivated Lorentz-symmetry tests with laser interferometers , 2003, gr-qc/0306019.

[37]  A. Kostelecký,et al.  Probing Lorentz and CPT violation with space-based experiments , 2003, hep-ph/0306190.

[38]  P. Mcdonald,et al.  Redefining spinors in Lorentz-violating quantum electrodynamics , 2002 .

[39]  A. Kostelecký,et al.  Signals for Lorentz violation in electrodynamics , 2002, hep-ph/0205211.

[40]  A. Kostelecký,et al.  Clock-comparison tests of Lorentz and CPT symmetry in space. , 2001, Physical review letters.

[41]  R. Lehnert,et al.  Stability, causality, and Lorentz and CPT violation , 2000, hep-th/0012060.

[42]  Bernard F. Schutz,et al.  The GEO 600 gravitational wave detector , 2002 .

[43]  Y. Ng,et al.  Measuring the Foaminess of Space-Time with Gravity-Wave Interferometers , 1999, gr-qc/9906003.

[44]  G. Amelino-Camelia Gravity wave interferometers as probes of a low-energy effective quantum gravity , 1999, gr-qc/9903080.

[45]  A. Kostelecký,et al.  Lorentz-Violating Extension of the Standard Model , 1998, hep-ph/9809521.

[46]  A. Kostelecký,et al.  $CPT$ violation and the standard model , 1997, hep-ph/9703464.

[47]  A. Kostelecký,et al.  CPT, strings, and meson factories. , 1995, Physical review. D, Particles and fields.

[48]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[49]  V. Kostelecký,et al.  CPT and strings , 1991 .

[50]  Samuel,et al.  Spontaneous breaking of Lorentz symmetry in string theory. , 1989, Physical review. D, Particles and fields.

[51]  Paul Melchior,et al.  The Tides of Planet Earth , 1978 .

[52]  Edward M. Thorndike,et al.  Experimental Establishment of the Relativity of Time , 1932 .

[53]  Albert A. Michelson,et al.  LVIII. On the relative motion of the earth and the luminiferous Æther , 1887 .

[54]  A. Michelson,et al.  On the relative motion of the Earth and the luminiferous ether , 1887, American Journal of Science.