Searching for photon-sector Lorentz violation using gravitational-wave detectors
暂无分享,去创建一个
[1] F. Pretorius,et al. Theoretical Physics Implications of the Binary Black-Hole Merger GW150914 , 2016 .
[2] M. Schreck. Fermionic Lorentz violation and its implications for interferometric gravitational-wave detection , 2016, 1603.07452.
[3] A. Kostelecký,et al. Testing local Lorentz invariance with gravitational waves , 2016, 1602.04782.
[4] S. Schiller,et al. High-sensitivity crossed-resonator laser apparatus for improved tests of Lorentz invariance and of space-time fluctuations , 2016 .
[5] M. Zanolin,et al. Measuring violations of general relativity from single gravitational wave detection by nonspinning binary systems: Higher-order asymptotic analysis , 2015, 1509.02248.
[6] C. S. Unnikrishnan,et al. IndIGO and LIGO-India: Scope and Plans for Gravitational Wave Research and Precision Metrology in India , 2015, 1510.06059.
[7] J. Tasson,et al. Constraints on Lorentz violation from gravitational Čerenkov radiation , 2015, 1508.07007.
[8] Henric Krawczynski,et al. Search for anisotropic Lorentz invariance violation with γ -rays , 2015, 1505.02669.
[9] Y. Bonder. Lorentz violation in the gravity sector: The t puzzle , 2015, 1504.03636.
[10] H. Häffner,et al. Michelson–Morley analogue for electrons using trapped ions to test Lorentz symmetry , 2014, Nature.
[11] A. Peters,et al. Direct terrestrial test of Lorentz symmetry in electrodynamics to 10−18 , 2014, Nature Communications.
[12] C. Hogan,et al. Interferometric tests of Planckian quantum geometry models , 2014, 1410.8197.
[13] A. Melissinos. On the Possible Detection of Low Frequency Periodic Signals in Gravitational Wave Interferometers , 2014, 1410.0854.
[14] J. Tasson,et al. What do we know about Lorentz invariance? , 2014, Reports on progress in physics. Physical Society.
[15] V. Rudenko,et al. Low-frequency signals of large-scale gravitational-wave interferometers , 2013, 1310.3104.
[16] M. Schreck. Obtaining bounds from ultra-high energy cosmic rays in isotropic modified Maxwell theory , 2013, 1310.5159.
[17] A. Freise,et al. Finesse, Frequency domain INterferomEter Simulation SoftwarE , 2013, 1306.2973.
[18] Kentaro Somiya,et al. Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.
[19] J. Tasson,et al. Matter-gravity couplings and Lorentz violation , 2010, 1006.4106.
[20] Gabriela Gonzalez,et al. The LIGO Scientific Collaboration , 2015 .
[21] A. Kostelecký,et al. Classical kinematics for Lorentz violation , 2010, 1008.5062.
[22] A. Melissinos. The effect of the Tides on the LIGO Interferometers , 2010, 1001.0558.
[23] B. Altschul. Bounding isotropic Lorentz violation using synchrotron losses at LEP , 2009, 0905.4346.
[24] A. Kostelecký,et al. Electrodynamics with Lorentz-violating operators of arbitrary dimension , 2009, 0905.0031.
[25] D. Phillips,et al. Particle-accelerator constraints on isotropic modifications of the speed of light. , 2009, Physical review letters.
[26] D. Phillips,et al. Limits on Isotropic Lorentz Violation in QED from Collider Physics , 2008, 0809.3442.
[27] Alan Kostelecky,et al. Astrophysical Tests of Lorentz and CPT Violation with Photons , 2008, 0809.2846.
[28] G. Russo,et al. The Virgo 3 km interferometer for gravitational wave detection , 2008 .
[29] A. Kostelecký,et al. Data Tables for Lorentz and CPT Violation , 2008, 0801.0287.
[30] R. Lehnert. Nonlocal on-shell field redefinition for the standard-model extension , 2006 .
[31] B. Altschul. Eliminating the CPT-odd f coefficient from the Lorentz-violating standard model extension , 2006, hep-th/0602235.
[32] R. Bluhm. Overview of the SME: Implications and phenomenology of Lorentz violation , 2005, hep-ph/0506054.
[33] A. Kostelecký,et al. Lorentz-Violating Electrostatics and Magnetostatics , 2004, hep-ph/0407252.
[34] G. Sardin. Testing Lorentz symmetry of special relativity by means of the Virgo or Ligo set-up, through the differential measure of the two orthogonal beams time-of-flight , 2004, physics/0404116.
[35] A. Kostelecký. Gravity, Lorentz violation, and the standard model , 2003, hep-th/0312310.
[36] G. Amelino-Camelia,et al. Quantum-gravity-motivated Lorentz-symmetry tests with laser interferometers , 2003, gr-qc/0306019.
[37] A. Kostelecký,et al. Probing Lorentz and CPT violation with space-based experiments , 2003, hep-ph/0306190.
[38] P. Mcdonald,et al. Redefining spinors in Lorentz-violating quantum electrodynamics , 2002 .
[39] A. Kostelecký,et al. Signals for Lorentz violation in electrodynamics , 2002, hep-ph/0205211.
[40] A. Kostelecký,et al. Clock-comparison tests of Lorentz and CPT symmetry in space. , 2001, Physical review letters.
[41] R. Lehnert,et al. Stability, causality, and Lorentz and CPT violation , 2000, hep-th/0012060.
[42] Bernard F. Schutz,et al. The GEO 600 gravitational wave detector , 2002 .
[43] Y. Ng,et al. Measuring the Foaminess of Space-Time with Gravity-Wave Interferometers , 1999, gr-qc/9906003.
[44] G. Amelino-Camelia. Gravity wave interferometers as probes of a low-energy effective quantum gravity , 1999, gr-qc/9903080.
[45] A. Kostelecký,et al. Lorentz-Violating Extension of the Standard Model , 1998, hep-ph/9809521.
[46] A. Kostelecký,et al. $CPT$ violation and the standard model , 1997, hep-ph/9703464.
[47] A. Kostelecký,et al. CPT, strings, and meson factories. , 1995, Physical review. D, Particles and fields.
[48] Joshua R. Smith,et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.
[49] V. Kostelecký,et al. CPT and strings , 1991 .
[50] Samuel,et al. Spontaneous breaking of Lorentz symmetry in string theory. , 1989, Physical review. D, Particles and fields.
[51] Paul Melchior,et al. The Tides of Planet Earth , 1978 .
[52] Edward M. Thorndike,et al. Experimental Establishment of the Relativity of Time , 1932 .
[53] Albert A. Michelson,et al. LVIII. On the relative motion of the earth and the luminiferous Æther , 1887 .
[54] A. Michelson,et al. On the relative motion of the Earth and the luminiferous ether , 1887, American Journal of Science.