Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics.

Electromagnetic field localization in nanoantennas is one of the leitmotivs that drives the development of plasmonics. The near-fields in these plasmonic nanoantennas are commonly addressed theoretically within classical frameworks that neglect atomic-scale features. This approach is often appropriate since the irregularities produced at the atomic scale are typically hidden in far-field optical spectroscopies. However, a variety of physical and chemical processes rely on the fine distribution of the local fields at this ultraconfined scale. We use time-dependent density functional theory and perform atomistic quantum mechanical calculations of the optical response of plasmonic nanoparticles, and their dimers, characterized by the presence of crystallographic planes, facets, vertices, and steps. Using sodium clusters as an example, we show that the atomistic details of the nanoparticles morphologies determine the presence of subnanometric near-field hot spots that are further enhanced by the action of the underlying nanometric plasmonic fields. This situation is analogue to a self-similar nanoantenna cascade effect, scaled down to atomic dimensions, and it provides new insights into the limits of field enhancement and confinement, with important implications in the optical resolution of field-enhanced spectroscopies and microscopies.

[1]  Annemarie Pucci,et al.  Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. , 2008, Physical review letters.

[2]  J. A. Alonso Structure and Properties of Atomic Nanoclusters , 2005 .

[3]  Satoshi Kawata,et al.  Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes , 2013, Nature Communications.

[4]  Cohen,et al.  First-principles study of the structural properties of alkali metals. , 1986, Physical review. B, Condensed matter.

[5]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[6]  J. Aizpurua,et al.  Gold Spiky Nanodumbbells: Anisotropy in Gold Nanostars , 2014 .

[7]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[8]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[9]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[10]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[11]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[12]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[13]  K. Ishimura,et al.  First-principles computational visualization of localized surface plasmon resonance in gold nanoclusters. , 2014, The journal of physical chemistry. A.

[14]  N J Halas,et al.  Optical spectroscopy of conductive junctions in plasmonic cavities. , 2010, Nano letters.

[15]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[16]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[17]  C. P. Burrows,et al.  Cascaded optical field enhancement in composite plasmonic nanostructures. , 2010, Physical review letters.

[18]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[19]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[20]  Bert Hecht,et al.  Electrically connected resonant optical antennas. , 2012, Nano letters.

[21]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[22]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[23]  J. Aizpurua,et al.  Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. , 2010, Nano letters.

[24]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[25]  Naomi J. Halas,et al.  Plasmon Resonance Shifts of Au-Coated Au 2 S Nanoshells: Insight into Multicomponent Nanoparticle Growth , 1997 .

[26]  Naomi J Halas,et al.  Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.

[27]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[28]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[29]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[30]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[31]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[32]  J. Friedel XIV. The distribution of electrons round impurities in monovalent metals , 1952 .

[33]  J. Hafner,et al.  Plasmon resonances of a gold nanostar. , 2007, Nano letters.

[34]  A. Bouhelier,et al.  Nonlinear photon-assisted tunneling transport in optical gap antennas. , 2014, Nano letters.

[35]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. , 2012, Annual review of physical chemistry.

[36]  J. Aizpurua,et al.  Monitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic Nanocavities , 2014, ACS nano.

[37]  Tomasz J. Antosiewicz,et al.  Competition between surface screening and size quantization for surface plasmons in nanoparticles , 2013 .

[38]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[39]  P. Nordlander,et al.  Tunable molecular plasmons in polycyclic aromatic hydrocarbons. , 2013, ACS nano.

[40]  A Paul Alivisatos,et al.  Transition from isolated to collective modes in plasmonic oligomers. , 2010, Nano letters.

[41]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[42]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[43]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[44]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[45]  Peter J. Feibelman,et al.  Microscopic calculation of electromagnetic fields in refraction at a jellium-vacuum interface , 1975 .

[46]  M. Broyer,et al.  Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding. , 2011, ACS nano.

[47]  Dietrich Foerster,et al.  On the Kohn-Sham density response in a localized basis set. , 2009, The Journal of chemical physics.

[48]  J. Nørskov,et al.  Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking , 2005, Nature materials.

[49]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[50]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[51]  Emil Prodan,et al.  Quantum plasmonics: optical properties and tunability of metallic nanorods. , 2010, ACS nano.

[52]  Eric C Le Ru,et al.  Single-molecule surface-enhanced Raman spectroscopy. , 2012, Annual review of physical chemistry.

[53]  Olivier Coulaud,et al.  A Parallel Iterative Method for Computing Molecular Absorption Spectra. , 2010, Journal of chemical theory and computation.

[54]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[55]  Bert Hecht,et al.  Impedance matching and emission properties of nanoantennas in an optical nanocircuit. , 2009, Nano letters.

[56]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[57]  Olivier J. F. Martin,et al.  Controlling and tuning strong optical field gradients at a local probe microscope tip apex , 1997 .

[58]  J. Murrell,et al.  Potential energy functions for atomic solids , 1990 .

[59]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[60]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[61]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[62]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[63]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[64]  A. Borisov,et al.  Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. , 2013, Physical review letters.

[65]  Stephen R Quake,et al.  Tip-enhanced fluorescence microscopy at 10 nanometer resolution. , 2004, Physical review letters.

[66]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[67]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[68]  E. Coronado,et al.  Quantum dynamical simulations of local field enhancement in metal nanoparticles , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[69]  L. Jensen,et al.  A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering. , 2014, Accounts of chemical research.

[70]  Zachary J. Lapin,et al.  Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. , 2012, Physical review letters.

[71]  L. Jensen,et al.  A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy. , 2012, The Journal of chemical physics.

[72]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[73]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[74]  D. P. Woodruff Atomic clusters from gas phase to deposited , 2007 .

[75]  Volker Deckert,et al.  Ultraflat transparent gold nanoplates--ideal substrates for tip-enhanced Raman scattering experiments. , 2009, Small.

[76]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[77]  Olivier Coulaud,et al.  Fast construction of the Kohn–Sham response function for molecules , 2009, 0910.3796.

[78]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[79]  Geometric magic numbers of sodium clusters: Interpretation of the melting behaviour , 2005, cond-mat/0506329.

[80]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[81]  Angel Rubio,et al.  Ab initio nanoplasmonics: The impact of atomic structure , 2014 .

[82]  Ulrich Hohenester,et al.  Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[83]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[84]  Carsten Rockstuhl,et al.  Fabry-Pérot resonances in one-dimensional plasmonic nanostructures. , 2009, Nano letters.

[85]  Bert Hecht,et al.  Atomic-scale confinement of resonant optical fields. , 2012, Nano letters.

[86]  Hongxing Xu,et al.  A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. , 2012, Small.

[87]  D. J. Mowbray,et al.  Trends in CO Oxidation Rates for Metal Nanoparticles and Close-Packed, Stepped, and Kinked Surfaces , 2009 .

[88]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[89]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[90]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[91]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[92]  L. Novotný,et al.  Antennas for light , 2011 .

[93]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[94]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[95]  Juan Carlos Cuevas,et al.  Optical rectification and field enhancement in a plasmonic nanogap. , 2010, Nature nanotechnology.

[96]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[97]  L. Liz‐Marzán,et al.  Light concentration at the nanometer scale , 2010 .

[98]  Liebsch,et al.  Influence of a polarizable medium on the nonlocal optical response of a metal surface. , 1995, Physical review. B, Condensed matter.

[99]  M. Bonn,et al.  Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas. , 2010, Optics express.

[100]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[101]  Romain Quidant,et al.  Nanoplasmonics for chemistry. , 2014, Chemical Society reviews.

[102]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .