Counting canonical partitions in the random graph
暂无分享,去创建一个
[1] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[2] P. Erdös,et al. A combinatorial theorem , 1950 .
[3] R. Stanley,et al. Enumerative Combinatorics: Index , 1999 .
[4] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[5] Norbert Sauer. COLORING SUBGRAPHS OF THE RADO GRAPH , 2006, Comb..
[6] Ross Street. Trees, permutations and the tangent function , 2003 .
[7] Vojkan Vuksanovic,et al. Canonical Partitions Of Universal Structures , 2006, Comb..
[8] Keith R. Milliken,et al. A Ramsey Theorem for Trees , 1979, J. Comb. Theory, Ser. A.
[9] Vojkan Vuksanovic. Canonical Equivalence Relations on ℚn , 2003, Order.
[10] Norbert Sauer. Edge partitions of the countable triangle free homogeneous graph , 1998, Discret. Math..
[11] Vojkan Vuksanovic,et al. A proof of a partition theorem for [Q]n , 2002 .
[12] Vojkan Vuksanovic. Infinite partitions of random graphs , 2006, J. Comb. Theory, Ser. A.
[13] G. N. Raney. Functional composition patterns and power series reversion , 1960 .