Predefined-time integral sliding mode control of second-order systems

This manuscript introduces the design of a controller that ensures predefined-time convergence for a class of second-order systems. In contrast to finite- and fixed-time controllers, predefined-time schemes allow to prescribe a bound for the convergence time as a control parameter. First, a predefined-time integral sliding mode controller allows rejecting unknown but bounded matched disturbances. Then, the system dynamics evolve free of the effect of disturbances during the integral sliding motion. Finally, an ideal controller enforces convergence also in predefined-time. A Lyapunov-like characterisation for predefined-time stability is conducted, and numerical results are provided to illustrate the validity of the proposed technique.

[1]  Andrey Polyakov,et al.  Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems , 2012, IEEE Transactions on Automatic Control.

[2]  Xuemei Ren,et al.  Fixed-time sliding mode control based plant/controller co-design of dual-motor driving system , 2019, Int. J. Syst. Sci..

[3]  Shixi Hou,et al.  Adaptive Global Sliding-Mode Control for Dynamic Systems Using Double Hidden Layer Recurrent Neural Network Structure , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[4]  G. Tallman,et al.  Analog study of dead-beat posicast control , 1958 .

[5]  Liang Sun,et al.  Finite‐Time Sliding Mode Trajectory Tracking Control of Uncertain Mechanical Systems , 2017 .

[6]  Juan Diego Sanchez-Torres,et al.  A Second Order Sliding Mode Controller with Predefined-Time Convergence , 2018, 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).

[7]  Raymond A. DeCarlo,et al.  Decentralized tracking for a class of interconnected nonlinear systems using variable structure control , 1988, Autom..

[8]  Leonid Fridman,et al.  Uniform Second-Order Sliding Mode Observer for mechanical systems , 2010, 2010 11th International Workshop on Variable Structure Systems (VSS).

[9]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[10]  V. Utkin,et al.  Sliding mode control in dynamic systems , 1992 .

[11]  Emilio Roxin,et al.  On finite stability in control systems , 1966 .

[12]  Wilfrid Perruquetti,et al.  Finite time stability conditions for non-autonomous continuous systems , 2008, Int. J. Control.

[13]  Zongyu Zuo,et al.  Nonsingular fixed-time consensus tracking for second-order multi-agent networks , 2015, Autom..

[14]  Andrey Polyakov,et al.  On Necessary and Sufficient Conditions for Fixed-Time Stability of Continuous Autonomous Systems , 2018, 2018 European Control Conference (ECC).

[15]  Alexander G. Loukianov,et al.  A class of predefined-time controllers for uncertain second-order systems , 2020, Eur. J. Control.

[16]  Yu Zhang,et al.  Disturbance observer-based fixed-time prescribed performance tracking control for robotic manipulator , 2019, Int. J. Syst. Sci..

[17]  Leonid M. Fridman,et al.  Stability notions and Lyapunov functions for sliding mode control systems , 2014, J. Frankl. Inst..

[18]  V. Utkin,et al.  Integral sliding mode in systems operating under uncertainty conditions , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[19]  Alexander G. Loukianov,et al.  A discontinuous recurrent neural network with predefined time convergence for solution of linear programming , 2014, 2014 IEEE Symposium on Swarm Intelligence.

[20]  O. Smith Posicast Control of Damped Oscillatory Systems , 1957 .

[21]  Z. Rekasius,et al.  An alternate approach to the fixed terminal point regulator problem , 1964 .

[22]  Juntao Fei,et al.  Dynamic Terminal Sliding-Mode Control for Single-Phase Active Power Filter Using New Feedback Recurrent Neural Network , 2020, IEEE Transactions on Power Electronics.

[23]  Xiangyang Ji,et al.  Finite-time containment control of perturbed multi-agent systems based on sliding-mode control , 2018, Int. J. Syst. Sci..

[24]  Wilfrid Perruquetti,et al.  Finite-time stability and stabilization: State of the art , 2006 .

[25]  V. Haimo Finite time controllers , 1986 .

[26]  Alexander G. Loukianov,et al.  Predefined-Time Backstepping Control for Tracking a Class of Mechanical Systems , 2017 .

[27]  Rosalba Galvan-Guerra,et al.  Integral Sliding-Mode Observation and Control for Switched Uncertain Linear Time Invariant Systems: A Robustifying Strategy , 2018 .

[28]  Alessandro Astolfi,et al.  Homogeneous Approximation, Recursive Observer Design, and Output Feedback , 2008, SIAM J. Control. Optim..

[29]  Saleh Mobayen,et al.  Consensus tracking of multi-agent systems using constrained neural-optimiser-based sliding mode control , 2020, Int. J. Syst. Sci..

[30]  Yugang Niu,et al.  Finite-time output feedback control of uncertain switched systems via sliding mode design , 2018, Int. J. Syst. Sci..

[31]  Yuanli Cai,et al.  On SFTSM control with fixed-time convergence , 2017 .

[32]  Alexander G. Loukianov,et al.  A second order predefined-time control algorithm , 2017, 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).

[33]  Jiong Jin,et al.  Fixed-time consensus for multi-agent systems with discontinuous inherent dynamics over switching topology , 2017, Int. J. Syst. Sci..

[34]  Alexander G. Loukianov,et al.  A class of predefined-time stable dynamical systems , 2018 .

[35]  Cheng-Chew Lim,et al.  Neural network adaptive dynamic sliding mode formation control of multi-agent systems , 2020, Int. J. Syst. Sci..

[36]  Alexander G. Loukianov,et al.  On optimal predefined‐time stabilization , 2017 .