Association analyses identify 31 new risk loci for colorectal cancer susceptibility

[1]  J. Al-Maghrabi Vimentin immunoexpression is associated with higher tumor grade, metastasis, and shorter survival in colorectal cancer. , 2020, International journal of clinical and experimental pathology.

[2]  S. Chanock,et al.  Division of Cancer Epidemiology and Genetics , 2020, Definitions.

[3]  R. Sanz-Pamplona,et al.  Analysis of Killer Immunoglobulin-Like Receptor Genes in Colorectal Cancer , 2020, Cells.

[4]  A. Czumaj,et al.  Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease , 2020, Nutrients.

[5]  Elizabeth M. Webber,et al.  Cost-Effectiveness of Risk-Stratified Colorectal Cancer Screening Based on Polygenic Risk: Current Status and Future Potential , 2019, JNCI cancer spectrum.

[6]  Sohini Ramachandran,et al.  Germline features associated with immune infiltration in solid tumors , 2019, bioRxiv.

[7]  Stephanie A. Bien,et al.  Novel Common Genetic Susceptibility Loci for Colorectal Cancer , 2018, Journal of the National Cancer Institute.

[8]  Mathieu Lemire,et al.  Discovery of common and rare genetic risk variants for colorectal cancer , 2018, Nature Genetics.

[9]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[10]  D. Kiel,et al.  Exploring causality in the association between circulating 25-hydroxyvitamin D and colorectal cancer risk: a large Mendelian randomisation study , 2018, BMC Medicine.

[11]  Nilanjan Chatterjee,et al.  Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits , 2018, Nature Genetics.

[12]  R. Houlston,et al.  Capture Hi‐C Library Generation and Analysis to Detect Chromatin Interactions , 2018, Current protocols in human genetics.

[13]  K. D. Sørensen,et al.  Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci , 2018, Nature Genetics.

[14]  W. Guan,et al.  Genome-wide association meta-analysis of circulating odd-numbered chain saturated fatty acids: Results from the CHARGE Consortium , 2018, PloS one.

[15]  Yusuke Nakamura,et al.  GWAS identifies two novel colorectal cancer loci at 16q24.1 and 20q13.12 , 2018, Carcinogenesis.

[16]  L. Liang,et al.  A genome-wide cross trait analysis from UK Biobank highlights the shared genetic architecture of asthma and allergic diseases , 2018, Nature Genetics.

[17]  P. Visscher,et al.  Meta-analysis of genome-wide association studies for height and body mass index in ∼700,000 individuals of European ancestry , 2018, bioRxiv.

[18]  H. Brenner,et al.  Strongly enhanced colorectal cancer risk stratification by combining family history and genetic risk score , 2018, Clinical epidemiology.

[19]  R. Houlston,et al.  Genome-wide association studies of cancer: current insights and future perspectives , 2017, Nature Reviews Cancer.

[20]  Christian Gieger,et al.  Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas , 2017, Oncotarget.

[21]  Christian Gieger,et al.  Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis , 2017, PLoS Medicine.

[22]  J. Witte,et al.  Familial Risk and Heritability of Colorectal Cancer in the Nordic Twin Study of Cancer , 2017, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[23]  J. Danesh,et al.  Association analyses based on false discovery rate implicate new loci for coronary artery disease , 2017, Nature Genetics.

[24]  Tanya M. Teslovich,et al.  An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans , 2017, Diabetes.

[25]  Åsa Johansson,et al.  Corrigendum: 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function , 2017, Scientific Reports.

[26]  James J. Morrow,et al.  Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome , 2017, Nature Communications.

[27]  Doug Speed,et al.  Re-evaluation of SNP heritability in complex human traits , 2016, Nature Genetics.

[28]  David C. Wilson,et al.  Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease , 2016, Nature Genetics.

[29]  M. Nalls,et al.  Detection of genetic loci associated with plasma fetuin-A: a meta-analysis of genome-wide association studies from the CHARGE Consortium , 2017, Human molecular genetics.

[30]  Kyle J. Gaulton,et al.  Genome-wide associations for birth weight and correlations with adult disease , 2016 .

[31]  H. Brenner,et al.  Identification of Susceptibility Loci and Genes for Colorectal Cancer Risk. , 2016, Gastroenterology.

[32]  Donghyung Lee,et al.  A simple yet accurate correction for winner's curse can predict signals discovered in much larger genome scans , 2016, Bioinform..

[33]  Hongbing Shen,et al.  Common genetic variation in ETV6 is associated with colorectal cancer susceptibility , 2016, Nature Communications.

[34]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[35]  V. Salomaa,et al.  Variation at 2q35 (PNKD and TMBIM1) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease , 2016, Human molecular genetics.

[36]  D. Kerr,et al.  Implications of polygenic risk for personalised colorectal cancer screening. , 2016, Annals of oncology : official journal of the European Society for Medical Oncology.

[37]  Ellen M. Schmidt,et al.  New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk , 2016, Nature Communications.

[38]  L. Liang,et al.  Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. , 2016, Human molecular genetics.

[39]  Manolis Kellis,et al.  HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease , 2015, Nucleic Acids Res..

[40]  Jonathan M. Cairns,et al.  CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data , 2015, Genome Biology.

[41]  Philip A. Ewels,et al.  HiCUP: pipeline for mapping and processing Hi-C data , 2015, F1000Research.

[42]  Hongbing Shen,et al.  Genome-wide association study identifies two new susceptibility loci for colorectal cancer at 5q23.3 and 17q12 in Han Chinese , 2015, Oncotarget.

[43]  J. Rioux,et al.  Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus , 2015, Nature Genetics.

[44]  Melissa Bondy,et al.  Genome-wide association study identifies multiple susceptibility loci for glioma , 2022 .

[45]  Casey S. Greene,et al.  International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways , 2015, Nature Communications.

[46]  Simon G. Coetzee,et al.  motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites , 2015, Bioinform..

[47]  Emmanouil T. Dermitzakis,et al.  Fast and efficient QTL mapper for thousands of molecular phenotypes , 2015, bioRxiv.

[48]  Christopher P. Fischer,et al.  Genome-wide association study of colorectal cancer identifies six new susceptibility loci , 2015, Nature Communications.

[49]  Aung Ko Win,et al.  A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer , 2015, Scientific Reports.

[50]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[51]  R. Houlston,et al.  Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci , 2015, Nature Communications.

[52]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[53]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[54]  Audrey Y. Chu,et al.  Genetic loci associated with circulating levels of very long-chain saturated fatty acids[S] , 2015, Journal of Lipid Research.

[55]  David M. Evans,et al.  A novel common variant in DCST2 is associated with length in early life and height in adulthood , 2014, Human molecular genetics.

[56]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[57]  Weidinger,et al.  Genetics (AAGC) (2015). Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. , 2015 .

[58]  AM Fernandes-Pujals Heritability of Major Depressive Disorder , stratified by age of onset , sex , and illness course in Generation Scotland : Scottish Family Health Study ( GS : SFHS ) , 2015 .

[59]  Jonathan M. Cairns,et al.  Robust Detection of DNA Looping Interactions in Capture HiC data , 2015 .

[60]  S. Gruber,et al.  A novel colorectal cancer risk locus at 4q32.2 identified from an international genome-wide association study. , 2014, Carcinogenesis.

[61]  Gabriele Migliorini,et al.  visPIG - A Web Tool for Producing Multi-Region, Multi-Track, Multi-Scale Plots of Genetic Data , 2014, PloS one.

[62]  Aung Ko Win,et al.  Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. , 2014, Human molecular genetics.

[63]  H. Stunnenberg,et al.  A Polymorphic Enhancer near GREM1 Influences Bowel Cancer Risk through Differential CDX2 and TCF7L2 Binding , 2014, Cell reports.

[64]  D. V. Berg,et al.  Trans-ethnic genome-wide association study of colorectal cancer identifies a new susceptibility locus in VTI1A , 2014, Nature Communications.

[65]  Á. Carracedo,et al.  A Colorectal Cancer Susceptibility New Variant at 4q26 in the Spanish Population Identified by Genome-Wide Association Analysis , 2014, PloS one.

[66]  W. Guan,et al.  Genome-Wide Association Study of Plasma N6 Polyunsaturated Fatty Acids Within the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium , 2014, Circulation. Cardiovascular genetics.

[67]  Yan Guo,et al.  Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk , 2014, Nature Genetics.

[68]  S. Tims,et al.  Faecal Microbiota Composition in Adults Is Associated with the FUT2 Gene Determining the Secretor Status , 2014, PloS one.

[69]  Jun S. Liu,et al.  Genetics of rheumatoid arthritis contributes to biology and drug discovery , 2013 .

[70]  Manolis Kellis,et al.  Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments , 2013, Nucleic acids research.

[71]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[72]  Thomas Whitington,et al.  Transcription Factor Binding in Human Cells Occurs in Dense Clusters Formed around Cohesin Anchor Sites , 2013, Cell.

[73]  Buhm Han,et al.  Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens , 2013, PloS one.

[74]  Archie Campbell,et al.  Cohort Profile: Generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its participants and their potential for genetic research on health and illness. , 2013, International journal of epidemiology.

[75]  Chun Jimmie Ye,et al.  Effectively Identifying eQTLs from Multiple Tissues by Combining Mixed Model and Meta-analytic Approaches , 2013, PLoS genetics.

[76]  Buhm Han,et al.  Chromatin marks identify critical cell types for fine mapping complex trait variants , 2012 .

[77]  W. Guan,et al.  Genome-Wide Association Study Identifies Novel Loci Associated With Concentrations of Four Plasma Phospholipid Fatty Acids in the De Novo Lipogenesis Pathway: Results From the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium , 2013, Circulation. Cardiovascular genetics.

[78]  T. Ninomiya,et al.  Diabetes mellitus and cancer risk: Review of the epidemiological evidence , 2013, Cancer science.

[79]  Ben Zhang,et al.  Genome-wide association analyses in East Asians identify new susceptibility loci for colorectal cancer , 2012, Nature Genetics.

[80]  Vladimir B. Bajic,et al.  HOCOMOCO: a comprehensive collection of human transcription factor binding sites models , 2012, Nucleic Acids Res..

[81]  지선하 Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis , 2013 .

[82]  B. Qian,et al.  Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia , 2012, Nature Genetics.

[83]  Ian J Deary,et al.  Cohort profile: the Lothian Birth Cohorts of 1921 and 1936. , 2012, International journal of epidemiology.

[84]  William Stafford Noble,et al.  Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors , 2012, Genome research.

[85]  Yong Zhang,et al.  Identifying ChIP-seq enrichment using MACS , 2012, Nature Protocols.

[86]  Swneke D. Bailey,et al.  Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.

[87]  Alexander van Oudenaarden,et al.  The Lgr5 Intestinal Stem Cell Signature: Robust Expression of Proposed Quiescent ' Þ 4' Cell Markers , 2022 .

[88]  Steven Gallinger,et al.  Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk , 2012, Nature Genetics.

[89]  Mark Stitt,et al.  RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics , 2012, Nucleic Acids Res..

[90]  Claude Bouchard,et al.  A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance , 2012, Nature Genetics.

[91]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[92]  Inês Barroso,et al.  A genome-wide association meta-analysis identifies new childhood obesity loci , 2012, Nature Genetics.

[93]  R. Durbin,et al.  Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses , 2012, Nature Protocols.

[94]  O. Delaneau,et al.  A linear complexity phasing method for thousands of genomes , 2011, Nature Methods.

[95]  C. Carlson,et al.  Meta-analysis of new genome-wide association studies of colorectal cancer risk , 2011, Human Genetics.

[96]  P. D. de Bakker,et al.  Genome‐wide meta‐analysis identifies novel multiple sclerosis susceptibility loci , 2011, Annals of neurology.

[97]  M. Fornage,et al.  Genetic Loci Associated with Plasma Phospholipid n-3 Fatty Acids: A Meta-Analysis of Genome-Wide Association Studies from the CHARGE Consortium , 2011, PLoS genetics.

[98]  Steven Gallinger,et al.  Multiple Common Susceptibility Variants near BMP Pathway Loci GREM1, BMP4, and BMP2 Explain Part of the Missing Heritability of Colorectal Cancer , 2011, PLoS genetics.

[99]  A. Briggs,et al.  SCOT: Short Course Oncology Therapy-A comparison of 12 and 24 weeks of adjuvant chemotherapy in colorectal cancer. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[100]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[101]  Gary D Bader,et al.  Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation , 2010, PloS one.

[102]  Jean-Baptiste Cazier,et al.  Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33 , 2010, Nature Genetics.

[103]  A. Morris,et al.  Data quality control in genetic case-control association studies , 2010, Nature Protocols.

[104]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[105]  Tariq Ahmad,et al.  Meta-analysis and imputation refines the association of 15q25 with smoking quantity , 2010, Nature Genetics.

[106]  P. Deloukas,et al.  Multiple common variants for celiac disease influencing immune gene expression , 2010, Nature Genetics.

[107]  C Schafmayer,et al.  COGENT (COlorectal cancer GENeTics): an international consortium to study the role of polymorphic variation on the risk of colorectal cancer , 2009, British Journal of Cancer.

[108]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[109]  Esko Ukkonen,et al.  The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling , 2009, Nature Genetics.

[110]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[111]  Steven Gallinger,et al.  Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer , 2008, Nature Genetics.

[112]  B. Ponder,et al.  Polygenes, risk prediction, and targeted prevention of breast cancer. , 2008, The New England journal of medicine.

[113]  Julian Peto,et al.  A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3 , 2008, Nature Genetics.

[114]  I. Deary,et al.  Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21 , 2008, Nature Genetics.

[115]  A. Tenesa,et al.  Dietary Vitamin B6 Intake and the Risk of Colorectal Cancer , 2008, Cancer Epidemiology Biomarkers & Prevention.

[116]  Oliver Sieber,et al.  A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk , 2007, Nature Genetics.

[117]  E. Papaemmanuil,et al.  National study of colorectal cancer genetics , 2007, British Journal of Cancer.

[118]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[119]  Oliver Sieber,et al.  A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21 , 2007, Nature Genetics.

[120]  Jon Wakefield,et al.  A Bayesian measure of the probability of false discovery in genetic epidemiology studies. , 2007, American journal of human genetics.

[121]  J. Rice,et al.  Human SFMBT is a transcriptional repressor protein that selectively binds the N‐terminal tail of histone H3 , 2007, FEBS letters.

[122]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[123]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[124]  P. Fearnhead,et al.  Genome-wide association study of prostate cancer identifies a second risk locus at 8q24 , 2007, Nature Genetics.

[125]  C. Power,et al.  Cohort profile: 1958 British birth cohort (National Child Development Study). , 2006, International journal of epidemiology.

[126]  J. Westendorf,et al.  Wnt signaling in osteoblasts and bone diseases. , 2004, Gene.

[127]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[128]  D. Grönemeyer,et al.  Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle. , 2002, American heart journal.

[129]  R. Houlston,et al.  A systematic review and meta-analysis of familial colorectal cancer risk , 2001, American Journal of Gastroenterology.

[130]  K. Abrams,et al.  The risk of colorectal cancer in ulcerative colitis: a meta-analysis , 2001, Gut.

[131]  H. Clevers,et al.  Linking Colorectal Cancer to Wnt Signaling , 2000, Cell.