Peribolosporomycetes class. nov.: description of a new heat resistant and osmotolerant basidiomycete lineage, represented by Peribolospora gen. nov., P. kevripleyi sp. nov., and P. baueri sp. nov.

[1]  Fatma Kaya Yıldırım,et al.  Heat-resistant moulds: Assessment, prevention and their consequences for food safety and public health , 2022, Czech Journal of Food Sciences.

[2]  Konstantinos D. Tsirigos,et al.  SignalP 6.0 predicts all five types of signal peptides using protein language models , 2022, Nature Biotechnology.

[3]  Michael F. Seidl,et al.  Enemy or ally: a genomic approach to elucidate the lifestyle of Phyllosticta citrichinaensis , 2021, bioRxiv.

[4]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[5]  K. Pawlowsky,et al.  Heat resistance of yeast ascospores and their utilisation for the validation of pasteurisation processes for beers , 2021 .

[6]  D. Begerow,et al.  Improved strategies to efficiently isolate thermophilic, thermotolerant, and heat-resistant fungi from compost and soil , 2021, Mycological Progress.

[7]  M. Kolařík,et al.  GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies , 2020, Scientific Data.

[8]  M. Mack,et al.  Identifying Functional Impacts of Heat-Resistant Fungi on Boreal Forest Recovery After Wildfire , 2020, Frontiers in Forests and Global Change.

[9]  D. Emms,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[10]  Toni Gabaldón,et al.  Fungal evolution: diversity, taxonomy and phylogeny of the Fungi , 2019, Biological reviews of the Cambridge Philosophical Society.

[11]  F. Biasioli,et al.  How to resolve cryptic species of polypores: an example in Fomes , 2019, IMA Fungus.

[12]  J. Churey,et al.  Association of fungal genera from spoiled processed foods with physicochemical food properties and processing conditions. , 2019, Food microbiology.

[13]  Patricia P. Chan,et al.  tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes , 2019, bioRxiv.

[14]  K. Hodge,et al.  Fruit infected with Paecilomyces niveus: A source of spoilage inoculum and patulin in apple juice concentrate? , 2019, Food Control.

[15]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[16]  J. V. Van Impe,et al.  Occurrence, distribution and contamination levels of heat-resistant moulds throughout the processing of pasteurized high-acid fruit products. , 2018, International journal of food microbiology.

[17]  N. Gunde-Cimerman,et al.  The Genus Wallemia—From Contamination of Food to Health Threat , 2018, Microorganisms.

[18]  Zhenglu Yang,et al.  dbCAN2: a meta server for automated carbohydrate-active enzyme annotation , 2018, Nucleic Acids Res..

[19]  M. Thines,et al.  Phylogenomics of Bartheletia paradoxa reveals its basal position in Agaricomycotina and that the early evolutionary history of basidiomycetes was rapid and probably not strictly bifurcating , 2018, Mycological Progress.

[20]  V. Bernini,et al.  Aspergilli with Neosartorya-type ascospores: heat resistance and effect of sugar concentration on growth and spoilage incidence in berry products. , 2017, International journal of food microbiology.

[21]  J. Stajich,et al.  The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. , 2017, Microbiology spectrum.

[22]  S. Casaregola,et al.  One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes , 2015, Persoonia.

[23]  K. Seifert,et al.  Basidioascus undulatus: genome, origins, and sexuality , 2015, IMA fungus.

[24]  J. Frisvad,et al.  A Taxonomic Revision of the Wallemia sebi Species Complex , 2015, PloS one.

[25]  R. Henrik Nilsson,et al.  Global diversity and geography of soil fungi , 2014, Science.

[26]  M. Soudi,et al.  Basidioascus persicus sp. nov., a yeast-like species of the order Geminibasidiales isolated from soil. , 2014, International journal of systematic and evolutionary microbiology.

[27]  Mario Inostroza-Ponta,et al.  (GTG)5 MSP-PCR Fingerprinting as a Technique for Discrimination of Wine Associated Yeasts? , 2014, PloS one.

[28]  H. Sychrová,et al.  Osmotolerant yeast species differ in basic physiological parameters and in tolerance of non‐osmotic stresses , 2014, Yeast.

[29]  K. Seifert,et al.  Paratritirachium curvibasidium, a new heat-resistant basidiomycete from flare pit soils in Alberta, Canada , 2014, Mycological Progress.

[30]  A. Cherif,et al.  Diversity and Enzymatic Profiling of Halotolerant Micromycetes from Sebkha El Melah, a Saharan Salt Flat in Southern Tunisia , 2014, BioMed research international.

[31]  G. M. D. de Aragão,et al.  Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process , 2014, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[32]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[33]  E. Berni,et al.  Heat-resistance of Hamigera avellanea and Thermoascus crustaceus isolated from pasteurized acid products. , 2014, International journal of food microbiology.

[34]  F. Chen,et al.  Natural Occurrence, Analysis, and Prevention of Mycotoxins in Fruits and their Processed Products , 2014, Critical reviews in food science and nutrition.

[35]  Inna Dubchak,et al.  MycoCosm portal: gearing up for 1000 fungal genomes , 2013, Nucleic Acids Res..

[36]  Ž. Jurjević,et al.  Talaromyces columbinus sp. nov., and Genealogical Concordance Analysis in Talaromyces Clade 2a , 2013, PloS one.

[37]  K. Seifert,et al.  Basidioascus and Geminibasidium: a new lineage of heat-resistant and xerotolerant basidiomycetes , 2013, Mycologia.

[38]  N. Gunde-Cimerman,et al.  Morphological responses to high sugar concentrations differ from adaptation to high salt concentrations in the xerophilic fungi Wallemia spp. , 2013, Fungal biology.

[39]  S. Suh,et al.  Proposal of Zygosaccharomyces parabailii sp. nov. and Zygosaccharomyces pseudobailii sp. nov., novel species closely related to Zygosaccharomyces bailii. , 2013, International journal of systematic and evolutionary microbiology.

[40]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[41]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[42]  Y. Imanishi,et al.  Method for identifying heat-resistant fungi of the genus Neosartorya. , 2012, Journal of food protection.

[43]  John L. Spouge,et al.  Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi , 2012, Proceedings of the National Academy of Sciences.

[44]  R. Bauer,et al.  Melanoxa, a new genus in the Urocystidales (Ustilaginomycotina) , 2012, Mycological Progress.

[45]  N. Gunde-Cimerman,et al.  Morphological Response of the Halophilic Fungal Genus Wallemia to High Salinity , 2009, Applied and Environmental Microbiology.

[46]  C. Salvador,et al.  MSP-PCR and RAPD molecular biomarkers to characterizeAmanita ponderosa mushrooms , 2009, Annals of Microbiology.

[47]  J. Fankhauser,et al.  New primers for promising single-copy genes in fungal phylogenetics and systematics , 2009, Persoonia.

[48]  B. Humbel,et al.  Septal pore complex morphology in the Agaricomycotina (Basidiomycota) with emphasis on the Cantharellales and Hymenochaetales. , 2009, Mycological research.

[49]  M. Grube,et al.  Bartheletia paradoxa is a living fossil on Ginkgo leaf litter with a unique septal structure in the Basidiomycota. , 2008, Mycological research.

[50]  P. de Vos,et al.  Validation of the (GTG)(5)-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. , 2008, International journal of food microbiology.

[51]  J. Dijksterhuis Heat-resistant ascospores , 2007 .

[52]  D. Hibbett A phylogenetic overview of the Agaricomycotina. , 2006 .

[53]  Pedro W. Crous,et al.  Phylogeny of the Quambalariaceae fam. nov., including important Eucalyptus pathogens in South Africa and Australia , 2006, Studies in mycology.

[54]  G. Ash,et al.  Survival of Sclerotinia sclerotia under fire , 2005, Australasian Plant Pathology.

[55]  N. Gunde-Cimerman,et al.  Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.) , 2005, Antonie van Leeuwenhoek.

[56]  P. Galtier,et al.  Byssochlamys nivea as a Source of Mycophenolic Acid , 2005, Applied and Environmental Microbiology.

[57]  E. D. Jackson,et al.  Devriesia, a new hyphomycete genus to accommodate heat-resistant, cladosporium-like fungi , 2004 .

[58]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[59]  J. Dijksterhuis,et al.  Dormant ascospores of Talaromyces macrosporus are activated to germinate after treatment with ultra high pressure , 2004, Journal of applied microbiology.

[60]  B. Hall,et al.  Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). , 2002, American journal of botany.

[61]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[62]  R. Bauer,et al.  Ultrastructural markers and systematics in smut fungi and allied taxa , 1997 .

[63]  B D Hall,et al.  The origin of red algae: implications for plastid evolution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[64]  P. Kotzekidou Heat resistance of Byssochlamys nivea, Byssochlamys fulva and Neosartorya fischeri isolated from canned tomato paste , 1997 .

[65]  J. H. I. Huis in't Veld,et al.  Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains , 1996, Applied and environmental microbiology.

[66]  S. Tanksley,et al.  Microprep protocol for extraction of DNA from tomato and other herbaceous plants , 1995, Plant Molecular Biology Reporter.

[67]  E. Piecková,et al.  Heat resistance of fungi from soil. , 1993, International journal of food microbiology.

[68]  T. Bruns,et al.  ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts , 1993, Molecular ecology.

[69]  M. Teuber,et al.  Heat resistance of ascospores of Byssochlamys nivea in milk and cream. , 1991, International journal of food microbiology.

[70]  R. Vilgalys,et al.  Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species , 1990, Journal of bacteriology.

[71]  L. Beuchat,et al.  Age-related changes in ultrastructure and chemical composition associated with changes in heat resistance of Neosartorya fischeri ascospores , 1987 .

[72]  L. Beuchat,et al.  Heat resistance of ascospores of Neosartorya fischeri as affected by sporulation and heating medium , 1987 .

[73]  J. Pitt,et al.  Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods , 1980, Applied and environmental microbiology.

[74]  H. Bayne,et al.  Heat resistance of Byssochlamys ascospores , 1979, Applied and environmental microbiology.

[75]  H. D. Tresner,et al.  Sodium Chloride Tolerance of Terrestrial Fungi , 1971 .

[76]  E. Piecková,et al.  Heat resistant fungi, toxicity and their management by nanotechnologies , 2020 .

[77]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[78]  J. Pereira,et al.  Contrasting soil fungal communities in Mediterranean pine forests subjected to different wildfire frequencies , 2014, Fungal Diversity.

[79]  H. Wösten,et al.  Fungal spores for dispersion in space and time. , 2013, Advances in applied microbiology.

[80]  J. Houbraken,et al.  Standardization of methods for detecting heat resistant fungi. , 2006, Advances in experimental medicine and biology.

[81]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[82]  B. Hall,et al.  USING RPB 1 SEQUENCES TO IMPROVE PHYLOGENETIC INFERENCE AMONG MUSHROOMS ( I NOCYBE , AGARICALES ) , 2002 .

[83]  J. Frisvad,et al.  Methods for the detection, isolation and characterization of food-borne fungi , 2000 .

[84]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[85]  K. Mendgen,et al.  Septal pore apparatus of the smut Ustacystis waldsteiniae , 1995 .

[86]  V Tournas,et al.  Heat-resistant fungi of importance to the food and beverage industry. , 1994, Critical reviews in microbiology.

[87]  W. Meyer,et al.  Rapid identification and differentiation of yeasts by DNA and PCR fingerprinting , 1993, Journal of basic microbiology.

[88]  M. Cubeta Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene , 1991 .

[89]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[90]  John I. Pitt,et al.  Xerophilic Fungi and the Spoilage of Foods of Plant Origin , 1975 .