The genome of Eimeria falciformis - reduction and specialization in a single host apicomplexan parasite

BackgroundThe phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host.ResultsThe genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria.ConclusionsReduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.

[1]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[2]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[3]  Guangli Zhu,et al.  Apicoplast genome of the coccidian Eimeria tenella. , 2003, Gene.

[4]  David S. Roos,et al.  Comparative Genomics of the Apicomplexan Parasites Toxoplasma gondii and Neospora caninum: Coccidia Differing in Host Range and Transmission Strategy , 2012, PLoS pathogens.

[5]  L. Monteagudo,et al.  Synaptonemal complex karyotype of Eimeria tenella. , 2005, International journal for parasitology.

[6]  J. Ajioka,et al.  Polymorphic Secreted Kinases Are Key Virulence Factors in Toxoplasmosis , 2006, Science.

[7]  M. Quail,et al.  Sequencing and analysis of chromosome 1 of Eimeria tenella reveals a unique segmental organization. , 2007, Genome research.

[8]  J. Saeij,et al.  Toxoplasma gondii effectors are master regulators of the inflammatory response. , 2011, Trends in parasitology.

[9]  K. Shehu,et al.  Cross-reactions between Eimeria falciformis and Eimeria pragensis in mice induced by trickle infections , 1998, Parasitology.

[10]  David Penny,et al.  Widespread intron loss suggests retrotransposon activity in ancient apicomplexans. , 2007, Molecular biology and evolution.

[11]  Natarajan Kannan,et al.  Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa , 2011, BMC Evolutionary Biology.

[12]  D. Schmatz,et al.  Purification of Eimeria sporozoites by DE-52 anion exchange chromatography. , 1984, The Journal of protozoology.

[13]  A. Gruber,et al.  A selective review of advances in coccidiosis research. , 2013, Advances in parasitology.

[14]  A. Haberkorn Die Entwicklung vonEimeria falciformis (Eimer 1870) in der weißen Maus (Mus musculus) , 1970, Zeitschrift für Parasitenkunde.

[15]  Peter D. Karp,et al.  Annotation-based inference of transporter function , 2008, ISMB.

[16]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[17]  A PevznerPavel,et al.  De novo identification of repeat families in large genomes , 2005 .

[18]  M. Madan Babu,et al.  Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains , 2005, Nucleic acids research.

[19]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[20]  D. Soldati,et al.  Toxoplasma as a novel system for motility. , 2004, Current opinion in cell biology.

[21]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[22]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[23]  Melissa A. Miller,et al.  Leishmania chagasi: uptake of iron bound to lactoferrin or transferrin requires an iron reductase. , 2002, Experimental parasitology.

[24]  K. Wan,et al.  EmaxDB: Availability of a first draft genome sequence for the apicomplexan Eimeria maxima. , 2012, Molecular and biochemical parasitology.

[25]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[26]  J. Renauld,et al.  IL-22 Mediates Host Defense against an Intestinal Intracellular Parasite in the Absence of IFN-γ at the Cost of Th17-Driven Immunopathology , 2012, The Journal of Immunology.

[27]  P. Leprohon,et al.  ABC transporters involved in drug resistance in human parasites. , 2011, Essays in biochemistry.

[28]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[29]  Kami Kim,et al.  Toxoplasma Transcription Factor TgAP2XI-5 Regulates the Expression of Genes Involved in Parasite Virulence and Host Invasion* , 2013, The Journal of Biological Chemistry.

[30]  R. Lucius,et al.  Apicomplexan Parasite, Eimeria falciformis, Co-opts Host Tryptophan Catabolism for Life Cycle Progression in Mouse* , 2012, The Journal of Biological Chemistry.

[31]  Tareq B. Malas,et al.  Genomic analysis of the causative agents of coccidiosis in domestic chickens , 2014, Genome research.

[32]  N. Kannan,et al.  Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors , 2013, BMC Evolutionary Biology.

[33]  Philippa Rhodes,et al.  ApiDB: integrated resources for the apicomplexan bioinformatics resource center , 2006, Nucleic Acids Res..

[34]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[35]  Jeet Sukumaran,et al.  DendroPy: a Python library for phylogenetic computing , 2010, Bioinform..

[36]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[37]  Sean R Eddy,et al.  A new generation of homology search tools based on probabilistic inference. , 2009, Genome informatics. International Conference on Genome Informatics.

[38]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene finding in eukaryotes , 2004, Nucleic Acids Res..

[39]  D. Hill,et al.  Toxoplasma gondii: transmission, diagnosis and prevention. , 2002, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[40]  Keith Bradnam,et al.  Assessing the gene space in draft genomes , 2008, Nucleic acids research.

[41]  Michael S. Behnke,et al.  Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. , 2010, Cell host & microbe.

[42]  H. Mollenkopf,et al.  Eimeria falciformis infection of the mouse caecum identifies opposing roles of IFNγ-regulated host pathways for the parasite development , 2013, Mucosal Immunology.

[43]  L. Sibley,et al.  Modulation of innate immunity by Toxoplasma gondii virulence effectors , 2012, Nature Reviews Microbiology.

[44]  J. Dubey,et al.  Hammondia hammondi, an avirulent relative of Toxoplasma gondii, has functional orthologs of known T. gondii virulence genes , 2013, Proceedings of the National Academy of Sciences.

[45]  J. Whisstock,et al.  Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials. , 2010, Trends in biochemical sciences.

[46]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[47]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[48]  S. R. Sias,et al.  Characterization of a surface antigen of Eimeria tenella sporozoites and synthesis from a cloned cDNA in Escherichia coli. , 1988, Molecular and biochemical parasitology.

[49]  Lior Pachter,et al.  Identification of novel transcripts in annotated genomes using RNA-Seq , 2011, Bioinform..

[50]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[51]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[52]  D. Owen Eimeria falciformis (Eimer, 1870) in specific pathogen free and gnotobiotic mice , 1975, Parasitology.

[53]  S. Hay,et al.  The global distribution of clinical episodes of Plasmodium falciparum malaria , 2005, Nature.

[54]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[55]  J. Parkinson,et al.  Integrated Bioinformatic and Targeted Deletion Analyses of the SRS Gene Superfamily Identify SRS29C as a Negative Regulator of Toxoplasma Virulence , 2012, mBio.

[56]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[57]  P. A. Rea,et al.  Isolation and characterization of TgVP1, a type I vacuolar H+-translocating pyrophosphatase from Toxoplasma gondii. The dynamics of its subcellular localization and the cellular effects of a diphosphonate inhibitor. , 2003, The Journal of biological chemistry.

[58]  A. Horák,et al.  A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids , 2010, Proceedings of the National Academy of Sciences.

[59]  Guo-Hua Liu,et al.  Characterization of the complete mitochondrial genomes of five Eimeria species from domestic chickens. , 2011, Gene.

[60]  L. Sibley,et al.  Calcium-dependent signaling and kinases in apicomplexan parasites. , 2009, Cell host & microbe.

[61]  K. Wan,et al.  Eimeria tenella sporozoites and merozoites differentially express glycosylphosphatidylinositol-anchored variant surface proteins. , 2004, Molecular and biochemical parasitology.

[62]  Manolis Kellis,et al.  Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss , 2012, Bioinform..

[63]  Andrew R. Jones,et al.  Library of Apicomplexan Metabolic Pathways: a manually curated database for metabolic pathways of apicomplexan parasites , 2012, Nucleic Acids Res..

[64]  R. Lucius,et al.  CD8+ cells protect mice against reinfection with the intestinal parasite Eimeria falciformis. , 2010, Microbes and infection.

[65]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.

[66]  D. Bartholomeu,et al.  The MASP Family of Trypanosoma cruzi: Changes in Gene Expression and Antigenic Profile during the Acute Phase of Experimental Infection , 2012, PLoS neglected tropical diseases.

[67]  D. Soldati,et al.  Mix and match modules: structure and function of microneme proteins in apicomplexan parasites. , 2001, Trends in parasitology.

[68]  Kami Kim,et al.  A Conserved Subtilisin-like Protein TgSUB1 in Microneme Organelles of Toxoplasma gondii * , 2001, The Journal of Biological Chemistry.

[69]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[70]  J. M. Peregrín-Alvarez,et al.  The origins of apicomplexan sequence innovation. , 2009, Genome research.

[71]  J. Boothroyd,et al.  Toxoplasma Rhoptry Protein 16 (ROP16) Subverts Host Function by Direct Tyrosine Phosphorylation of STAT6* , 2010, The Journal of Biological Chemistry.

[72]  Martin Giersberg,et al.  Model structure of the immunodominant surface antigen of Eimeria tenella identified as a target for sporozoite-neutralizing monoclonal antibody , 2009, Parasitology Research.

[73]  L. Sibley,et al.  Aldolase is essential for energy production and bridging adhesin-actin cytoskeletal interactions during parasite invasion of host cells. , 2009, Cell host & microbe.

[74]  Peter D. Karp,et al.  The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2007, Nucleic Acids Res..

[75]  Li Li,et al.  ToxoDB: accessing the Toxoplasma gondii genome , 2003, Nucleic Acids Res..

[76]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[77]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[78]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..