Plates and Shells
暂无分享,去创建一个
Cv Clemens Verhoosel | René de Borst | Joris J. C. Remmers | Mike A. Crisfield | M. Crisfield | R. Borst | J. Remmers
[1] K. Surana. Geometrically nonlinear formulation for the curved shell elements , 1983 .
[2] H. Parisch. A continuum‐based shell theory for non‐linear applications , 1995 .
[3] H. Parisch. Large displacements of shells including material nonlinearities , 1981 .
[4] A. Kühhorn,et al. A nonlinear theory for sandwich shells including the wrinkling phenomenon , 1992 .
[5] J. C. Simo,et al. On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .
[6] R. Hauptmann,et al. A SYSTEMATIC DEVELOPMENT OF 'SOLID-SHELL' ELEMENT FORMULATIONS FOR LINEAR AND NON-LINEAR ANALYSES EMPLOYING ONLY DISPLACEMENT DEGREES OF FREEDOM , 1998 .
[7] C. Burgoyne,et al. Exact ilyushin yield surface , 1993 .
[8] R. Borst. The zero-normal-stress condition in plane-stress and shell elastoplasticity , 1991 .
[9] E. Ramm,et al. Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .
[10] Klaus-Jürgen Bathe,et al. A geometric and material nonlinear plate and shell element , 1980 .
[11] Ekkehard Ramm,et al. Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates , 1994 .
[12] O. C. Zienkiewicz,et al. Analysis of thick and thin shell structures by curved finite elements , 1970 .
[13] E. Ramm,et al. Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .
[14] Dr.-Ing. C. Sansour. A Theory and finite element formulation of shells at finite deformations involving thickness change , 1995 .
[15] R. Borst,et al. Studies in anisotropic plasticity with reference to the Hill criterion , 1990 .
[16] M. Crisfield. A four-noded thin-plate bending element using shear constraints—a modified version of lyons' element , 1983 .
[17] William C. Schnobrich,et al. Degenerated isoparametric finite elements using explicit integration , 1986 .
[18] Ekkehard Ramm,et al. An assessment of assumed strain methods in finite rotation shell analysis , 1989 .
[19] Thomas J. R. Hughes,et al. Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .
[20] K. Bathe,et al. A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .
[21] J. C. Simo,et al. On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .
[22] J. C. Simo,et al. On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .
[23] J. C. Simo,et al. On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity: formulation and integration algorithms , 1992 .
[24] O. C. Zienkiewicz,et al. Reduced integration technique in general analysis of plates and shells , 1971 .
[25] M. Crisfield. A quadratic mindlin element using shear constraints , 1984 .
[26] Bjørn Skallerud,et al. Collapse of thin shell structures—stress resultant plasticity modelling within a co-rotated ANDES finite element formulation , 1999 .
[27] Garth N. Wells,et al. A solid‐like shell element allowing for arbitrary delaminations , 2003 .