Gauge invariant coupled cluster response theory using optimized nonorthogonal orbitals

Using the time-dependent Lagrangian response approach, the recently revived orbital optimized coupled cluster (OCC) model is reformulated using nonorthogonal orbital rotations in a manner that conserves the commutativity of the cluster excitation operators. The gauge invariance and the simple pole structure of the OCC linear response function are retained, while the dimension of the eigenvalue problem is reduced by a factor of 2. Restricting the cluster operator to double excitations, we have carried out the first implementation of gauge invariant coupled cluster response theory. Test calculations of the excitation energy, and length and velocity gauge oscillator strengths are presented for the lowest electric dipole allowed transitions of the CH + molecular ion and the Ne atom. Additionally, the excitation energies to the four lowest-lying states of water are calculated.

[1]  Nicholas C. Handy,et al.  Exact solution (within a double-zeta basis set) of the schrodinger electronic equation for water , 1981 .

[2]  H. Koch,et al.  Theoretical electronic absorption and natural circular dichroism spectra of (−)-trans-cyclooctene , 2000 .

[3]  Jeppe Olsen,et al.  Excitation energies of BH, CH2 and Ne in full configuration interaction and the hierarchy CCS, CC2, CCSD and CC3 of coupled cluster models , 1995 .

[4]  F. Aiga,et al.  Frequency-dependent hyperpolarizabilities in the brueckner coupled-cluster theory , 1994 .

[5]  H. C. Corben,et al.  Classical Mechanics (2nd ed.) , 1961 .

[6]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[7]  S. Epstein Gauge invariance, current conservation, and GIAO's , 1973 .

[8]  G. Scuseria,et al.  The optimization of molecular orbitals for coupled cluster wavefunctions , 1987 .

[9]  Poul Jo,et al.  Transition moments and dynamic polarizabilities in a second order polarization propagator approach , 1980 .

[10]  Jeppe Olsen,et al.  Excitation energies, transition moments and dynamic polarizabilities for CH+. A comparison of multiconfigurational linear response and full configuration interaction calculations , 1989 .

[11]  Nicholas C. Handy,et al.  Size-consistent Brueckner theory limited to double substitutions , 1989 .

[12]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[13]  Thomas Bondo Pedersen,et al.  Coupled cluster response functions revisited , 1997 .

[14]  Henrik Koch,et al.  Ground state benzene–argon intermolecular potential energy surface , 1999 .

[15]  D. Zubarev DOUBLE-TIME GREEN FUNCTIONS IN STATISTICAL PHYSICS , 1960 .

[16]  Anna I. Krylov,et al.  Energies and analytic gradients for a coupled-cluster doubles model using variational Brueckner orbitals: Application to symmetry breaking in O4+ , 1998 .

[17]  A. Hansen On the equivalence of different hamiltonians for the semi-classical radiation theory , 1970 .

[18]  Joseph C. Y. Chen OFF-DIAGONAL HYPERVIRIAL THEOREM AND ITS APPLICATIONS , 1964 .

[19]  P. I. Richards,et al.  On the Hamiltonian for a Particle in an Electromagnetic Field , 1948 .

[20]  P. Jørgensen,et al.  THE ELECTRONIC SPECTRUM OF FURAN , 1998 .

[21]  Ernest M. Loebl,et al.  Group theory and its applications , 1968 .

[22]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[23]  H. Koch,et al.  Gauge invariance of the coupled cluster oscillator strength , 1998 .

[24]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[25]  Anna I. Krylov,et al.  Excited states theory for optimized orbitals and valence optimized orbitals coupled-cluster doubles models , 2000 .

[26]  P. Jørgensen,et al.  Erratum to: ``Coupled cluster calculations of Verdet constants'' [Chem. Phys. Lett. 281 (1997) 445] , 1998 .

[27]  Trygve Helgaker,et al.  Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH+, CO, and H2O , 1990 .

[28]  Ove Christiansen,et al.  Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene , 2000 .

[29]  Trygve Helgaker,et al.  The integral‐direct coupled cluster singles and doubles model , 1996 .

[30]  P. Jørgensen,et al.  First-order one-electron properties in the integral-direct coupled cluster singles and doubles model , 1997 .

[31]  E. F. Hayes,et al.  Time‐Dependent Hellmann‐Feynman Theorems , 1965 .

[32]  Poul Jørgensen,et al.  Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies , 1996 .

[33]  P. Jørgensen,et al.  Brueckner coupled cluster response functions , 1994 .

[34]  P. Jørgensen,et al.  Gauge-origin independent magneto-optical activity within coupled cluster response theory , 2000 .

[35]  Robert A. Harris,et al.  Oscillator Strengths and Rotational Strengths in Hartree–Fock Theory , 1969 .

[36]  J. Olsen,et al.  Ab initio calculation of electronic circular dichroism fortrans-cyclooctene using London atomic orbitals , 1995 .

[37]  Trygve Helgaker,et al.  Highly accurate calculations of molecular electronic structure , 1999 .

[38]  L. O'raifeartaigh,et al.  Gauge theory: Historical origins and some modern developments , 2000 .

[39]  H. Koch,et al.  Gauge invariant coupled cluster response theory , 1999 .

[40]  C. E. Dykstra,et al.  An electron pair operator approach to coupled cluster wave functions. Application to He2, Be2, and Mg2 and comparison with CEPA methods , 1981 .

[41]  H. Koch,et al.  On the time-dependent Lagrangian approach in quantum chemistry , 1998 .

[42]  Anna I. Krylov,et al.  Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model , 1998 .

[43]  P. Jørgensen,et al.  Large-scale calculations of excitation energies in coupled cluster theory: The singlet excited states of benzene , 1996 .

[44]  Thomas Bondo Pedersen,et al.  Coupled cluster response calculation of natural chiroptical spectra , 1999 .

[45]  E. Dalgaard Time‐dependent multiconfigurational Hartree–Fock theory , 1980 .

[46]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[47]  H. Koch,et al.  Integral-direct coupled cluster calculations of frequency-dependent polarizabilities, transition probabilities and excited-state properties , 1998 .

[48]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[49]  Maria Goeppert-Mayer Über Elementarakte mit zwei Quantensprüngen , 1931 .

[50]  M. Ratner Molecular electronic-structure theory , 2000 .