Reconfigurable epsilon-near-zero metasurfaces via photonic doping

Abstract The next generation of flat optic devices aspires to a dynamic control of the wavefront characteristics. Here, we theoretically investigated the reconfigurable capabilities of an epsilon-near-zero (ENZ) metasurface augmented with resonant dielectric rods. We showed that the transmission spectrum of the metasurface is characterized by a Fano-like resonance, where the metasurface behavior changed from perfect magnetic conductor to epsilon-and-mu-near-zero material responses. The abrupt variation between these two extreme material responses suggests potential applications in dynamic metasurfaces. We highlighted the causality aspects of ENZ metasurfaces with a transient analysis and numerically investigated different reconfigurable mechanisms. Thus, this work introduces a new strategy for dynamic wavefront engineering.

[1]  N. Engheta,et al.  Boosting optical nonlinearities in ε-near-zero plasmonic channels , 2012 .

[2]  S. Kawata,et al.  Surface-Plasmon Holography with White-Light Illumination , 2011, Science.

[3]  N. Engheta,et al.  The rise of near-zero-index technologies , 2017, Science.

[4]  Richard W Ziolkowski,et al.  Propagation in and scattering from a matched metamaterial having a zero index of refraction. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  N. Engheta,et al.  Near-zero refractive index photonics , 2017, Nature Photonics.

[6]  Iñigo Ederra,et al.  Magnetotunable left-handed FeSiB ferromagnetic microwires. , 2010, Optics letters.

[7]  Mario Sorolla,et al.  Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna , 2014 .

[8]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[9]  Yu Wang,et al.  Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range , 2015 .

[10]  Peining Li,et al.  Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. , 2016, Nature materials.

[11]  Alexander V. Kildishev,et al.  Role of epsilon-near-zero substrates in the optical response of plasmonic antennas , 2016 .

[12]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[13]  W. T. Chen,et al.  Visible Wavelength Planar Metalenses Based on Titanium Dioxide , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Robert W. Boyd,et al.  Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region , 2016, Science.

[15]  Nader Engheta,et al.  Wave–matter interactions in epsilon-and-mu-near-zero structures , 2014, Nature Communications.

[16]  L. Novotný,et al.  Antennas for light , 2011 .

[17]  N. Engheta,et al.  Traditional and emerging materials for optical metasurfaces , 2017 .

[18]  Carlo Molardi,et al.  Controlling electromagnetic fields at boundaries of arbitrary geometries , 2016 .

[19]  C. N. Berglund,et al.  Optical Properties of VO2between 0.25 and 5 eV , 1968 .

[20]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[21]  O. Luukkonen,et al.  A Stepwise Nicolson–Ross–Weir-Based Material Parameter Extraction Method , 2011, IEEE Antennas and Wireless Propagation Letters.

[22]  A. Boltasseva,et al.  Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off , 2015 .

[23]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[24]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[25]  Nader Engheta,et al.  Digital metamaterials. , 2014, Nature materials.

[26]  C. N. Berglund,et al.  Optical Properties of V O 2 between 0.25 and 5 eV , 1968 .

[27]  Nader Engheta,et al.  Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. , 2006, Physical review letters.

[28]  G. Tayeb,et al.  A metamaterial for directive emission. , 2002, Physical review letters.

[29]  L. Caspani,et al.  Enhanced Nonlinear Refractive Index in ε-Near-Zero Materials. , 2016, Physical review letters.

[30]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[31]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[32]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[33]  Philippe Lalanne,et al.  Metalenses at visible wavelengths: past, present, perspectives , 2016 .

[34]  M. Yao,et al.  Deep inner-shell multiphoton ionization by intense x-ray free-electron laser pulses. , 2012, Physical review letters.

[35]  M. Stockman,et al.  Real and Imaginary Properties of Epsilon-Near-Zero Materials. , 2016, Physical review letters.

[36]  J. Soric,et al.  Longitudinally Independent Matching and Arbitrary Wave Patterning Using -Near-Zero Channels , 2015 .

[37]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[38]  Miguel Beruete,et al.  Experimental Demonstration of a Millimeter-Wave Metallic ENZ Lens Based on the Energy Squeezing Principle , 2015, IEEE Transactions on Antennas and Propagation.

[39]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[40]  N. Engheta,et al.  ϵ-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves , 2014 .

[41]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[42]  R. Ziolkowski,et al.  Wave propagation in media having negative permittivity and permeability. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[44]  M. Brongersma,et al.  Dynamic Reflection Phase and Polarization Control in Metasurfaces. , 2017, Nano letters.

[45]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[46]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[47]  R. Gonzalo,et al.  Reconfigurable Artificial Surfaces Based on Impedance Loaded Wires Close to a Ground Plane , 2012, IEEE Transactions on Antennas and Propagation.

[48]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[49]  Y. Wang,et al.  An ultrathin invisibility skin cloak for visible light , 2015, Science.

[50]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[51]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[52]  J. Soric,et al.  Longitudinally Independent Matching and Arbitrary Wave Patterning Using $\varepsilon$ -Near-Zero Channels , 2015, IEEE Transactions on Microwave Theory and Techniques.

[53]  N. Engheta,et al.  Photonic doping of epsilon-near-zero media , 2017, Science.

[54]  Stefan A. Maier,et al.  Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons , 2015 .

[55]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[56]  Yeshaiahu Fainman,et al.  Polarization selective beam shaping using nanoscale dielectric metasurfaces. , 2015, Optics express.

[57]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[58]  Alessandro Salandrino,et al.  Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern , 2007 .