Quasi-Static Forces and Stability Analysis in a Triangular Tube Bundle Subjected to Two-Phase Cross-Flow

Although almost half of the process heat exchangers operate in two-phase flow, the complex nature of the flow makes the prediction of fluidelastic instability a challenging problem yet to be solved. In the work reported here, the quasi-static fluid force-field is measured in a rotated-triangle tube bundle for a series of void fractions and flow velocities. The forces are strongly dependent on void fraction, flow rates and relative tube positions. The fluid force field is employed along with quasi-steady models [1, 2], originally developed for single phase flows, to model the two-phase flow problem. Stability analysis is performed using the single flexible tube model [1] as well as constrained mode analysis [2]. The results are compared with dynamic stability tests [3] and show good agreement. The results of single flexible tube analysis and multiple flexible tubes tend to coincide at low structural damping as expected. The present work uncovers some of the complexities of the fluid force field in two-phase flows. The data are valuable since they are the necessary inputs to the class of quasi-static, quasi-steady and quasi-unsteady fluidelastic instability theoretical models. This database opens a new research avenue on the feasibility of applying quasi-steady models to two-phase flow.Copyright © 2007 by ASME