Building divergent body plans with similar genetic pathways

[1]  B. Swalla 6 NEW INSIGHTS INTO VERTEBRATE ORIGINS , 2007 .

[2]  Tadashi Maruyama,et al.  Multiple origins of the ascidian-Prochloron symbiosis: molecular phylogeny of photosymbiotic and non-symbiotic colonial ascidians inferred from 18S rDNA sequences. , 2006, Molecular phylogenetics and evolution.

[3]  B. Swalla,et al.  Coloniality has evolved once in Stolidobranch Ascidians. , 2006, Integrative and comparative biology.

[4]  B. Swalla,et al.  Evolution and development of the chordates: collagen and pharyngeal cartilage. , 2006, Molecular biology and evolution.

[5]  F. Delsuc,et al.  Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.

[6]  E. Davidson,et al.  Gene Regulatory Networks and the Evolution of Animal Body Plans , 2006, Science.

[7]  D. Graur,et al.  The "inverse relationship between evolutionary rate and age of mammalian genes" is an artifact of increased genetic distance with rate of evolution and time of divergence. , 2006, Molecular biology and evolution.

[8]  I. Weissman,et al.  Stem Cells Are Units of Natural Selection in a Colonial Ascidian , 2006, Cell.

[9]  S. Hedges,et al.  Molecular phylogeny and divergence times of deuterostome animals. , 2005, Molecular biology and evolution.

[10]  B. Swalla,et al.  Nodal signaling and the evolution of deuterostome gastrulation , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[11]  M. Byrne,et al.  Involvement of two Hox genes and Otx in echinoderm body-plan morphogenesis in the sea urchin Holopneustes purpurescens. , 2005, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[12]  J. Gerhart,et al.  Hemichordates and the origin of chordates. , 2005, Current opinion in genetics & development.

[13]  T. Lepage,et al.  Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. , 2005, Developmental cell.

[14]  H. Philippe,et al.  Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. , 2005, Molecular biology and evolution.

[15]  Y. Passamaneck,et al.  Ciona intestinalis: Chordate development made simple , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[16]  B. Swalla,et al.  Molecular phylogeny of the protochordates: chordate evolution , 2005 .

[17]  Albert J Poustka,et al.  Nodal/activin signaling establishes oral–aboral polarity in the early sea urchin embryo , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[18]  K. Peterson Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes. , 2004, Molecular phylogenetics and evolution.

[19]  G. Wray,et al.  From bilateral symmetry to pentaradiality: the phylogeny of hemichordates and echinoderms , 2004 .

[20]  M. Yamaguchi,et al.  The Development of the Enteropneust Hemichordate Balanoglossus misakiensis Kuwano , 2004, Zoological science.

[21]  T. Lepage,et al.  Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. , 2004, Developmental cell.

[22]  G. Wray,et al.  The invertebrate deuterostomes: an introduction to their phylogeny, reproduction, development, and genomics. , 2004, Methods in cell biology.

[23]  U. Technau,et al.  Origin and evolution of endoderm and mesoderm. , 2003, The International journal of developmental biology.

[24]  A. Richard Palmer,et al.  Reproduction: Widespread cloning in echinoderm larvae , 2003, Nature.

[25]  M. Byrne,et al.  Evolution of echinoderms may not have required modification of the ancestral deuterostome HOX gene cluster: first report of PG4 and PG5 Hox orthologues in echinoderms , 2003, Development Genes and Evolution.

[26]  Sarah J. Bourlat,et al.  Xenoturbella is a deuterostome that eats molluscs , 2003, Nature.

[27]  E. Lander,et al.  Anteroposterior Patterning in Hemichordates and the Origins of the Chordate Nervous System , 2003, Cell.

[28]  G. Wray,et al.  Identification of Asteroid Genera With Species Capable of Larval Cloning , 2003, The Biological Bulletin.

[29]  A. Spagnuolo,et al.  Unusual number and genomic organization of Hox genes in the tunicate Ciona intestinalis. , 2003, Gene.

[30]  B. Rinkevich,et al.  Epithelial cell cultures from Botryllus schlosseri palleal buds: accomplishments and challenges. , 2003, Methods in cell science : an official journal of the Society for In Vitro Biology.

[31]  Jack Sullivan,et al.  Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. , 2002, Molecular biology and evolution.

[32]  J. Lengyel,et al.  It takes guts: the Drosophila hindgut as a model system for organogenesis. , 2002, Developmental biology.

[33]  D. Arendt,et al.  Evolution of the bilaterian larval foregut , 2001, Nature.

[34]  K. Hotta,et al.  Characterization of Brachyury-downstream notochord genes in the Ciona intestinalis embryo. , 2000, Developmental biology.

[35]  J. Bishop Water–borne sperm trigger vitellogenic egg growth in two sessile marine invertebrates , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  B. Swalla,et al.  Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Postlethwait,et al.  Brachyury (T) expression in embryos of a larvacean urochordate, Oikopleura dioica, and the ancestral role of T. , 2000, Developmental biology.

[38]  B. Swalla,et al.  Urochordates are monophyletic within the deuterostomes. , 2000, Systematic biology.

[39]  P. Holland,et al.  Colinear and segmental expression of amphioxus Hox genes. , 1999, Developmental biology.

[40]  N. Satoh,et al.  Pattern of Brachyury gene expression in starfish embryos resembles that of hemichordate embryos but not of sea urchin embryos , 1999, Mechanisms of Development.

[41]  A. Meyer,et al.  Vertebrate genomics: More fishy tales about Hox genes , 1999, Current Biology.

[42]  E. Davidson,et al.  Expression pattern of Brachyury and Not in the sea urchin: comparative implications for the origins of mesoderm in the basal deuterostomes. , 1999, Developmental biology.

[43]  E. Davidson,et al.  Organization of an echinoderm Hox gene cluster. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[44]  E. Davidson,et al.  A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. , 1999, Development.

[45]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[46]  E. Davidson,et al.  Expression of the Hox gene complex in the indirect development of a sea urchin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  K. Tagawa,et al.  Novel pattern of Brachyury gene expression in hemichordate embryos , 1998, Mechanisms of Development.

[48]  C. Nielsen Origin and evolution of animal life cycles , 1998 .

[49]  R. Raff,et al.  Sea urchin Hox genes: insights into the ancestral Hox cluster. , 1996, Molecular biology and evolution.

[50]  P. Holland,et al.  Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. , 1995, Development.

[51]  S. Carroll Homeotic genes and the evolution of arthropods and chordates , 1995, Nature.

[52]  A. Spagnuolo,et al.  Cloning of ascidian homeobox genes provides evidence for a primordial chordate cluster. , 1995, Gene.

[53]  K. Halanych The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. , 1995, Molecular phylogenetics and evolution.

[54]  R. R. Strathmann,et al.  What Molecular Phylogenies Tell Us about the Evolution of Larval Forms , 1994 .

[55]  K. Kardong,et al.  Vertebrates: Comparative Anatomy, Function, Evolution , 1994 .

[56]  N. Satoh,et al.  An Ascidian Homolog of the Mouse Brachyury (T) Gene is Expressed Exclusively in Notochord Cells at the Fate Restricted Stage , 1994, Development, growth & differentiation.

[57]  A. Sidow,et al.  Gene duplications and the origins of vertebrate development. , 1994, Development (Cambridge, England). Supplement.

[58]  N. Satoh,et al.  Function of vertebrate T gene , 1993, Nature.

[59]  L. Nezlin,et al.  Nervous System of the Tornaria Larva (Hemichordata: Enteropneusta). A Histochemical and Ultrastructural Study. , 1992, The Biological bulletin.

[60]  H. Wada,et al.  Phylogenetic Relationships between Solitary and Colonial Ascidians, as Inferred from the Sequence of the Central Region of their Respective 18S rDNAs. , 1992, The Biological bulletin.

[61]  D. Wilkinson,et al.  Expression pattern of the mouse T gene and its role in mesoderm formation , 1990, Nature.

[62]  G. Schoenwolf,et al.  Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. , 1989, The Journal of experimental zoology.

[63]  Bobb Schaeffer,et al.  Deuterostome Monophyly and Phylogeny , 1987 .

[64]  Histochemistry Springer-Verlag A Histochemical and Ultrastructural Study , 1983 .

[65]  M. Hadfield Chapter 7 – HEMICHORDATA , 1975 .

[66]  T. Morgan The growth and metamorphosis of Tornaria , 1891 .