New model for electron-impact ionization cross sections of molecules

A theoretical model for electron‐impact ionization cross sections, which has been developed primarily for atoms and atomic ions, is applied to neutral molecules. The new model combines the binary‐encounter theory and the Bethe theory for electron‐impact ionization, and uses minimal theoretical data for the ground state of the target molecule, which are readily available from public‐domain molecular structure codes such as GAMESS. The theory is called the binary‐encounter Bethe (BEB) model, and does not, in principle, involve any adjustable parameters. Applications to 19 molecules, including H2, NO, CH2, C6H6, and SF6, are presented, demonstrating that the BEB model provides total ionization cross sections by electron impact from threshold to several keV with an average accuracy of 15% or better at the cross section peak, except for SiF3. The BEB model can be applied to stable molecules as well as to transient radicals.

[1]  S. Srivastava,et al.  Total and partial ionization cross sections of NH3 by electron impact , 1992 .

[2]  William J. Meath,et al.  Cross sections for the direct and dissociative ionisation of NH3, H2O and H2S by electron impact , 1987 .

[3]  T. Märk,et al.  Absolute partial and total electron impact ionization cross sections for C2H6 from threshold up to 950 eV , 1993 .

[4]  R. Shul,et al.  Electron impact ionization cross sections of SiF2 , 1988 .

[5]  J. Craggs,et al.  Electron Attachment and Ionization in Oxygen, Carbon Monoxide and Carbon Dioxide , 1963 .

[6]  I. Bray Calculation of electron-impact ionization of lithium-like targets , 1995 .

[7]  R. Freund,et al.  Electron-Impact Ionization and Dissociative Ionization of the CD 3 and CD 2 Free Radicals , 1984 .

[8]  N. Mott The collision between two electrons , 1930 .

[9]  N. Djurić,et al.  H2O and D2O total ionization cross-sections by electron impact , 1988 .

[10]  M. V. D. Wiel,et al.  Ionization cross sections for electrons (0.6–20 keV) in noble and diatomic gases , 1966 .

[11]  Paul Scheier,et al.  Absolute partial and total electron impact ionization cross sections for C3H8 from threshold up to 950 eV , 1993 .

[12]  J. Kistemaker,et al.  Gross‐ and Partial‐Ionization Cross Sections for Electrons on Water Vapor in the Energy Range 0.1–20 keV , 1966 .

[13]  O. Orient,et al.  Electron impact ionisation of H2O, CO, CO2 and CH4 , 1987 .

[14]  D. R. Bates Case studies in atomic physics , 1975 .

[15]  M. Schmidt,et al.  On the Quantitative Determination of Cross Sections of Ionization of Molecules by Electronic Collisions , 1984 .

[16]  E. Krishnakumar,et al.  Cross-sections for electron impact ionization of O2 , 1992 .

[17]  S. K. Joshi,et al.  Electron-impact ionization cross section of ions , 1969 .

[18]  M. V. D. Wiel,et al.  Absolute Gross Ionization Cross Sections for Electrons (0.6–12 keV) in Hydrocarbons , 1966 .

[19]  E. Krishnakumar,et al.  Cross sections for the production of N2(+), N(+) + N2(2+) and N(2+) by electron impact on N2 , 1990 .

[20]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[21]  Rudd,et al.  Binary-encounter-dipole model for electron-impact ionization. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[22]  W. Nelson,et al.  Monte Carlo Transport of Electrons and Photons , 1988 .

[23]  D. Schultz,et al.  Classical description and calculation of ionization in collisions of 100 eV electrons and positrons with He and H2 , 1992 .

[24]  R. Robertson,et al.  Total and partial electron collisional ionization cross sections for CH4, C2H6, SiH4, and Si2H6 , 1984 .

[25]  R. Shul,et al.  Electron‐impact ionization cross sections of the SiF3 free radical , 1988 .

[26]  W. Kołos,et al.  Correlated Orbitals for the Ground State of the Hydrogen Molecule , 1960 .

[27]  D. Rapp,et al.  Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization , 1965 .

[28]  M. Gryziński,et al.  Classical Theory of Atomic Collisions. I. Theory of Inelastic Collisions , 1965 .

[29]  E. Krishnakumar,et al.  Electron correlation effects in the dissociative ionization of H2 , 1994 .

[30]  T. Märk,et al.  Electron impact ionization cross sections of molecules: Part II. Theoretical determination of total (counting) ionization cross sections of molecules: a new approach , 1990 .

[31]  Rudd,et al.  Angular and energy dependence of cross sections for ejection of electrons from water vapor. I. 50-2000-eV electron impact. , 1986, Physical review. A, General physics.

[32]  R. Freund,et al.  Absolute cross sections for electron‐impact ionization and dissociative ionization of the SiF free radical , 1988 .

[33]  I. Čadež,et al.  Electron impact total ionization cross-sections for methane, ethane and propane , 1991 .

[34]  M. Robin Handbook of He(I) photoelectron spectra of fundamental organic molecules : K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki and S. Iwata, 1981, Japan Scientific Societies Press, Tokyo, ISBN 4-7622-0263-X and Halsted Press, New York, 268 pp., US $44.95, ISBN 0-470-27200-7. , 1982 .

[35]  M. E. Rudd,et al.  Electron production in proton collisions with atoms and molecules: energy distributions , 1992 .

[36]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[37]  T. Märk,et al.  Measured and calculated absolute total cross-sections for the single ionization of CFx and NFx by electron impact , 1994 .