Polymer blends and composites from renewable resources

This article reviews recent advances in polymer blends and composites from renewable resources, and introduces a number of potential applications for this material class. In order to overcome disadvantages such as poor mechanical properties of polymers from renewable resources, or to offset the high price of synthetic biodegradable polymers, various blends and composites have been developed over the last decade. The progress of blends from three kinds of polymers from renewable resources—(1) natural polymers, such as starch, protein and cellulose; (2) synthetic polymers from natural monomers, such as polylactic acid; and (3) polymers from microbial fermentation, such as polyhydroxybutyrate—are described with an emphasis on potential applications. The hydrophilic character of natural polymers has contributed to the successful development of environmentally friendly composites, as most natural fibers and nanoclays are also hydrophilic in nature. Compatibilizers and the technology of reactive extrusion are used to improve the interfacial adhesion between natural and synthetic polymers. r 2006 Elsevier Ltd. All rights reserved.

[1]  X. Sun,et al.  Starch, Poly(lactic acid), and Poly(vinyl alcohol) Blends , 2003 .

[2]  H. Bader,et al.  Influence of natural fibres on the mechanical properties of biodegradable polymers. , 1998 .

[3]  C. Biliaderis,et al.  Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition , 2002 .

[4]  X. Deng,et al.  Miscibility, crystallization and morphology of poly(β-hydroxybutyrate)/poly(d,l-lactide) blends , 1996 .

[5]  H. Abe,et al.  Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R, S)-3-hydroxybutyrate] , 2000 .

[6]  R. Reis,et al.  Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments , 2004 .

[7]  R. Gross,et al.  Biopolymers from polysaccharides and agroproteins , 2001 .

[8]  M. Pluta Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization , 2004 .

[9]  L. Avérous,et al.  Properties of thermoplastic composites based on wheat-straw Lignocellulosic fillers , 2004 .

[10]  Vera A. Alvarez,et al.  Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites , 2004 .

[11]  G. Griffin Particulate starch based products , 1994 .

[12]  P. Gruber,et al.  Polylactic Acid Technology , 2000 .

[13]  Atsuyoshi Nakayama,et al.  Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties , 1998 .

[14]  L. Avérous,et al.  Poly(lactic acid): plasticization and properties of biodegradable multiphase systems , 2001 .

[15]  A. Dufresne,et al.  Improvement of Starch Film Performances Using Cellulose Microfibrils , 1998 .

[16]  Y. Doi,et al.  Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric and pentanoic acids , 1988, Applied Microbiology and Biotechnology.

[17]  M. Hanna,et al.  Biodegradable packaging foams of starch acetate blended with corn stalk fibers , 2004 .

[18]  X. Sun,et al.  Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate , 2002 .

[19]  E. Giannelis,et al.  Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II) , 2003 .

[20]  I. Chin,et al.  Toughening of poly(3-hydroxybutyrate) with poly(cis-1,4-isoprene) , 1999 .

[21]  C. Han,et al.  Multiphase flow in polymer processing , 1981 .

[22]  H. Abe,et al.  Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) , 1995 .

[23]  P. Seib,et al.  Blending of poly(lactic acid) and starches containing varying amylose content , 2003 .

[24]  A. Błędzki,et al.  Composites reinforced with cellulose based fibres , 1999 .

[25]  D. Raghavan,et al.  Characterization of starch/polyethylene and starch/polyethylene/poly(lactic acid) composites , 2001 .

[26]  X. Sun,et al.  Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate , 2004 .

[27]  F. Wypych,et al.  Starch films reinforced with mineral clay , 2003 .

[28]  X. Sun,et al.  Properties of poly(lactic acid) blends with various starches as affected by physical aging , 2003 .

[29]  O. Shoseyov,et al.  Engineering a bifunctional starch-cellulose cross-bridge protein. , 2004, Biomaterials.

[30]  Y. Doi,et al.  New bacterial copolyesters produced in Alcaligenes entrophus from organic acids , 1988 .

[31]  L. Avérous,et al.  Biocomposites based on plasticized starch: thermal and mechanical behaviours , 2004 .

[32]  P. Halley,et al.  Preparation and characterisation of biodegradable starch-based nanocomposite materials , 2003 .

[33]  G. Griffin,et al.  Chemistry and technology of biodegradable polymers. , 1994 .

[34]  R L Reis,et al.  The biocompatibility of novel starch-based polymers and composites: in vitro studies. , 2002, Biomaterials.

[35]  David P. Martin,et al.  PHA applications: addressing the price performance issue: I. Tissue engineering. , 1999, International journal of biological macromolecules.

[36]  P. Hu,et al.  Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. , 2002, Biomaterials.

[37]  A. Gandini,et al.  Thermoplastic starch/natural rubber blends , 2003 .

[38]  Taka-aki Kato,et al.  Amphiphilic biodegradable copolymer, poly(aspartic acid-co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(ε-caprolactone) , 2003 .

[39]  Z. Cai,et al.  Crystallization behavior, mechanical properties, and environmental biodegradability of poly(β-hydroxybutyrate)/cellulose acetate butyrate blends , 2003 .

[40]  P. P. King Biotechnology. An industrial view , 2007 .

[41]  Y. Inoue,et al.  Crystallization behavior and environmental biodegradability of the blend films of poly(3-hydroxybutyric acid) with chitin and chitosan , 2000 .

[42]  Phase systems of starch acetate and cellulose acetate in acetone:water , 1998 .

[43]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[44]  J. Bearinger,et al.  Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypic expression. , 1998, Journal of biomaterials science. Polymer edition.

[45]  C. Chen,et al.  Preparation and characterization of biodegradable PLA polymeric blends. , 2003, Biomaterials.

[46]  Yves Leterrier,et al.  Novel Pulp Fibre Reinforced Thermoplastic Composites , 2003 .

[47]  Maolin Zhai,et al.  Study on antibacterial starch/chitosan blend film formed under the action of irradiation , 2004 .

[48]  R. Reis,et al.  Chemical modification of starch based biodegradable polymeric blends: effects on water uptake, degradation behaviour and mechanical properties , 2000 .

[49]  R. Shanks,et al.  Properties of Poly(3-hydroxybutyric acid) Composites with Flax Fibres Modified by Plasticiser Absorption , 2002 .

[50]  J. Laurindo,et al.  Cassava bagasse-Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties , 2004 .

[51]  Y. Inoue,et al.  Thermal properties and crystallization behavior of poly(3‐hydroxybutyric acid) in blends with chitin and chitosan , 1999 .

[52]  W. Bergthaller,et al.  Processing and characterization of biodegradable products based on starch , 1998 .

[53]  R. Shogren,et al.  Aspen fiber addition improves the mechanical properties of baked cornstarch foams , 2004 .

[54]  J. L. Willett,et al.  Properties of starch‐graft‐poly(glycidyl methacrylate)–PHBV composites , 1998 .

[55]  Guoqiang Chen,et al.  Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. , 2003, Biomaterials.

[56]  L. Wang,et al.  Preparation and properties of thermoplastic starch-polyester laminate sheets by coextrusion , 2000 .

[57]  Won‐Ki Lee,et al.  Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites , 2003 .

[58]  Emmanuel P. Giannelis,et al.  Polymer-layered silicate nanocomposites: Synthesis, properties and applications , 1998 .

[59]  Chang Lim Jun,et al.  Reactive Blending of Biodegradable Polymers: PLA and Starch , 2000 .

[60]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[61]  J. Karger‐Kocsis,et al.  Tensile Fracture and Failure Behavior of Thermoplastic Starch with Unidirectional and Cross‐Ply Flax Fiber Reinforcements , 2003 .

[62]  Guo-Qiang Chen,et al.  Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates. , 2002, Biomaterials.

[63]  Nugraha Edhi Suyatma,et al.  Mechanical and Barrier Properties of Biodegradable Films Made from Chitosan and Poly (Lactic Acid) Blends , 2004 .

[64]  T. Galliard,et al.  Starch : properties and potential , 1987 .

[65]  Chi-Hsiung Jou,et al.  Antibacterial and biodegradable properties of polyhydroxyalkanoates grafted with chitosan and chitooligosaccharides via ozone treatment , 2003 .

[66]  C. Biliaderis,et al.  Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch , 1999 .

[67]  S. Fahmy,et al.  Miscibility, crystallization and phase structure of poly(3-hydroxybutyrate)/cellulose acetate butyrate blends , 2001 .

[68]  R. Marchessault,et al.  Miscibility and tensile properties of poly (β-hydroxybutyrate)–cellulose propionate blends , 1999 .

[69]  I. Arvanitoyannis,et al.  Edible films made from natural resources ; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols - Part 2 , 1996 .

[70]  X. Deng,et al.  Miscibility, thermal behaviour and morphological structure of poly(3-hydroxybutyrate) and ethyl cellulose binary blends , 1997 .

[71]  P. Yu,et al.  Miscibility and morphology of chiral semicrystalline poly‐(R)‐(3‐hydroxybutyrate)/chitosan and poly‐(R)‐(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)/chitosan blends studied with DSC, 1H T1 and T1ρ CRAMPS , 2002 .

[72]  C. Guoqiang,et al.  Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates , 2003 .

[73]  Y. Inoue,et al.  Effects of low molecular weight compounds with hydroxyl groups on properties of poly(L‐lactic acid) , 2001 .

[74]  Young Ha Kim,et al.  Biodegradable polymer blends of poly(L‐lactic acid) and gelatinized starch , 2000 .

[75]  S. Ray,et al.  New Polylactide/Layered Silicate Nanocomposites. 1. Preparation, Characterization, and Properties , 2002 .

[76]  X. Sun,et al.  Effects of Starch Moisture on Properties of Wheat Starch/Poly(Lactic Acid) Blend Containing Methylenediphenyl Diisocyanate , 2002 .

[77]  Jin-Hae Chang,et al.  Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability , 2003 .

[78]  P. Degée,et al.  New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: thermal and morphological study , 2003 .

[79]  D. Kaplan,et al.  Biopolymers from Renewable Resources , 1998 .

[80]  S. Nakamura,et al.  Biosynthesis and Characterization of Bacterial Poly(3-Hydroxybutyrate-co-3-hydroxypropionate) , 1991 .

[81]  R. Shanks,et al.  Thermoplastic biopolyester natural fiber composites , 2004 .

[82]  Xiaofei Ma,et al.  Studies on the properties of Montmorillonite-reinforced thermoplastic starch composites , 2004 .

[83]  A. Gandini,et al.  Size exclusion chromatography characterization of thermoplastic starch composites. 1. Influence of plasticizer and fibre content , 2003 .

[84]  A. S. Herrmann,et al.  Construction materials based upon biologically renewable resources—from components to finished parts , 1998 .

[85]  Y. Kimura,et al.  Properties and Biodegradability of Polymer Blends of Poly(L‐lactide)s with Different Optical Purity of the Lactate Units , 2002 .

[86]  Luc Avérous,et al.  Properties of Biodegradable Multilayer Films Based on Plasticized Wheat Starch , 2001 .

[87]  Hideto Tsuji,et al.  Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-lactide content, tacticity, and enantiomeric polymer blending , 2002 .

[88]  J. San Román,et al.  New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers , 1998, Journal of materials science. Materials in medicine.

[89]  H. Fischer Polymer nanocomposites: from fundamental research to specific applications , 2003 .

[90]  M. Vert,et al.  Present and Future of PLA Polymers , 1995 .

[91]  Hideto Tsuji,et al.  Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending , 2003 .

[92]  Yoshito Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers , 1992 .

[93]  L. Avérous,et al.  Plasticized starch–cellulose interactions in polysaccharide composites , 2001 .

[94]  Y. Doi,et al.  Miscibility of Binary Blends of Poly((R)-3-Hydroxybutyric Acid) and Poly((S)-Lactic Acid) , 1997 .

[95]  Rui L Reis,et al.  New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. , 2002, Biomaterials.

[96]  Chang-Sik Ha,et al.  Miscibility, properties, and biodegradability of microbial polyester containing blends , 2002 .

[97]  Young Hwan Park,et al.  Structural and thermal characteristics of Antheraea pernyi silk fibroin/chitosan blend film , 2001 .

[98]  Ulrich Riedel,et al.  Natural fibre‐reinforced biopolymers as construction materials – new discoveries , 1999 .

[99]  G. Saad Blends of bacterial poly[(R)-3-hydroxybutyrate] with oligo[(R,S)-3-hydroxybutyrate]-diol , 2002 .

[100]  Philippe Dubois,et al.  Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties , 2002 .

[101]  Chan-Young Park,et al.  Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids , 2002 .

[102]  T. Ichijo,et al.  Examination of human bone surrounded by a dense hydroxyapatite dental implant after long-term use. , 1992, Journal of long-term effects of medical implants.

[103]  R. Mülhaupt,et al.  Thermoplastic cellulose acetate and cellulose acetate compounds prepared by reactive processing , 1997 .

[104]  J. Swarbrick Drugs and the pharmaceutical sciences , 1975 .

[105]  Y. Bae,et al.  Insulin release from islets of Langerhans entrapped in a poly(N-isopropylacrylamide-co-acrylic acid) polymer gel. , 1999, Journal of biomaterials science. Polymer edition.

[106]  T. Kurauchi,et al.  Synthesis and properties of polyimide–clay hybrid , 1993 .

[107]  Susan Selke,et al.  An overview of polylactides as packaging materials. , 2004, Macromolecular bioscience.

[108]  X. Sun,et al.  Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends , 2001 .

[109]  J. L. Willett,et al.  Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil , 2003 .

[110]  Toshio Kurauchi,et al.  Synthesis of nylon 6-clay hybrid , 1993 .

[111]  Alyssa Panitch,et al.  Polymeric biomaterials for tissue and organ regeneration , 2001 .

[112]  Yoshito Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactides) , 1987 .

[113]  Y. Inoue,et al.  Effect of chemical compositional distribution on solid-state structures and properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) , 2004 .

[114]  E. Martuscelli,et al.  Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: thermal, mechanical properties and biodegradation behaviour , 2000 .

[115]  J. Lunt Large-scale production, properties and commercial applications of polylactic acid polymers , 1998 .

[116]  J. L. Willett,et al.  Processing and properties of extruded starch/polymer foams , 2002 .

[117]  Romano Lapasin,et al.  Starch–methylcellulose based edible films: rheological properties of film-forming dispersions , 2003 .

[118]  A. Copinet,et al.  Biodegradation study of a starch and poly(lactic acid) co-extruded material in liquid, composting and inert mineral media , 2002 .

[119]  X. Sun,et al.  Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites , 2003 .

[120]  A. J. Carvalho,et al.  Thermoplastic starch–cellulosic fibers composites: preliminary results , 2001 .

[121]  X. Sun,et al.  Strengthening blends of Poly(lactic acid) and starch with methylenediphenyl diisocyanate , 2001 .

[122]  S. Rizvi,et al.  Starch-based nanocomposites by reactive extrusion processing , 2004 .

[123]  V. Y. Grinberg,et al.  The plasticizing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers, food and seeds , 2000 .

[124]  P A Holmes,et al.  Applications of PHB - a microbially produced biodegradable thermoplastic , 1985 .

[125]  E. Mitsoulis Multilayer Sheet Coextrusion: Analysis and Design* , 1988 .

[126]  P. Dubois,et al.  Biodegradable compositions by reactive processing of aliphatic polyester/polysaccharide blends , 2003 .

[127]  11 – Biodegradable protein-nanoparticle composites , 2005 .

[128]  Alain Dufresne,et al.  Cellulose microfibrils from potato tuber cells: Processing and characterization of starch–cellulose microfibril composites , 2000 .

[129]  Yoshito Ikada,et al.  Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films , 1999 .

[130]  V. Álvarez,et al.  Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer–sisal fiber biocomposites , 2004 .

[131]  S. Ray,et al.  New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology , 2003 .

[132]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .