Nuclearity and non-nuclearity of some Sobolev embeddings on domains
暂无分享,去创建一个
David E. Edmunds | Petr Gurka | Jan Lang | D. Edmunds | P. Gurka | J. Lang
[1] Van Kien Nguyen,et al. Bernstein numbers of embeddings of isotropic and dominating mixed Besov spaces , 2014, 1411.7246.
[2] M. Fowler,et al. Function Spaces , 2022 .
[3] Nicole Tomczak-Jaegermann,et al. Bounds for projection constants and 1-summing norms , 1990 .
[4] David E. Edmunds,et al. Non-nuclearity of a Sobolev embedding on an interval , 2014, J. Approx. Theory.
[5] G. Jameson. Summing and nuclear norms in Banach space theory , 1987 .
[6] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[7] S. Kudryavtsev,et al. Bernstein width of a class of functions of finite smoothness , 1999 .
[8] Wacław Zawadowski,et al. Methods of Hilbert spaces , 1972 .
[9] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[10] Dorothee D. Haroske,et al. Envelopes and Sharp Embeddings of Function Spaces , 2006 .
[11] A. Pietsch. History of Banach Spaces and Linear Operators , 2007 .
[12] A. Pietsch,et al. Approximation numbers of nuclear operators and geometry of Banach spaces , 1991 .
[13] H. König. Eigenvalue Distribution of Compact Operators , 1986 .