Spatiotemporal dynamics in a ratio-dependent predator-prey model with time delay near the Turing-Hopf bifurcation point

[1]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[2]  V. Volterra Fluctuations in the Abundance of a Species considered Mathematically , 1926, Nature.

[3]  C. S. Holling The components of prédation as revealed by a study of small-mammal prédation of the European pine sawfly. , 1959 .

[4]  M E Gilpin,et al.  A model of the predator-prey relationship. , 1974, Theoretical population biology.

[5]  Donald L. DeAngelis,et al.  A Model for Tropic Interaction , 1975 .

[6]  J. Beddington,et al.  Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency , 1975 .

[7]  J. Murray Spatial structures in predator-prey communities— a nonlinear time delay diffusional model , 1976 .

[8]  J. Guckenheimer,et al.  The dynamics of density dependent population models , 1977, Journal of mathematical biology.

[9]  R. Arditi,et al.  A predator-prey model with satiation and intraspecific competition , 1978 .

[10]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[11]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .

[12]  Rovinsky,et al.  Interaction of Turing and Hopf bifurcations in chemical systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  Alan A. Berryman,et al.  The Orgins and Evolution of Predator‐Prey Theory , 1992 .

[14]  A. Gutierrez Physiological Basis of Ratio-Dependent Predator-Prey Theory: The Metabolic Pool Model as a Paradigm , 1992 .

[15]  R. Arditi,et al.  Empirical Evidence of the Role of Heterogeneity in Ratio‐Dependent Consumption , 1993 .

[16]  Eckehard Schöll,et al.  Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations , 1997 .

[17]  Jianhong Wu SYMMETRIC FUNCTIONAL DIFFERENTIAL EQUATIONS AND NEURAL NETWORKS WITH MEMORY , 1998 .

[18]  M A Lewis,et al.  How predation can slow, stop or reverse a prey invasion , 2001, Bulletin of mathematical biology.

[19]  R Arditi,et al.  Parametric analysis of the ratio-dependent predator–prey model , 2001, Journal of mathematical biology.

[20]  S. Hsu,et al.  Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[21]  Yang Kuang,et al.  Heteroclinic Bifurcation in the Michaelis-Menten-Type Ratio-Dependent Predator-Prey System , 2007, SIAM J. Appl. Math..

[22]  Thilo Gross,et al.  Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. , 2007, Journal of theoretical biology.

[23]  Yilei Tang,et al.  Computing the heteroclinic bifurcation curves in predator–prey systems with ratio-dependent functional response , 2008, Journal of mathematical biology.

[24]  Junjie Wei,et al.  Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system ✩ , 2009 .

[25]  Wan-Tong Li,et al.  Hopf bifurcation analysis for a delayed predator–prey system with diffusion effects , 2010 .

[26]  Zhenjie Liu,et al.  Existence of periodic solutions for a predator–prey system with sparse effect and functional response on time scales , 2012 .

[27]  Chengjian Zhang,et al.  A new linearized compact multisplitting scheme for the nonlinear convection-reaction-diffusion equations with delay , 2013, Commun. Nonlinear Sci. Numer. Simul..

[28]  Zizhen Zhang,et al.  Hopf bifurcation in a predator-prey system with Holling type III functional response and time delays , 2014 .

[29]  Junjie Wei,et al.  Bifurcation analysis of the Gierer–Meinhardt system with a saturation in the activator production , 2014 .

[30]  Yongli Song,et al.  Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point , 2014, Comput. Math. Appl..

[31]  Jiajun Lu,et al.  Stability and Hopf bifurcation for a business cycle model with expectation and delay , 2015, Commun. Nonlinear Sci. Numer. Simul..

[32]  Zhikun She,et al.  Uniqueness of periodic solutions of a nonautonomous density-dependent predator–prey system , 2015 .

[33]  Tonghua Zhang,et al.  Turing-Hopf bifurcation in the reaction-diffusion equations and its applications , 2016, Commun. Nonlinear Sci. Numer. Simul..

[34]  Rong Yuan,et al.  Bifurcation analysis in a modified Lesile–Gower model with Holling type II functional response and delay , 2016 .

[35]  Zhaosheng Feng,et al.  Bifurcation Analysis of a Predator-Prey System with Ratio-Dependent Functional Response , 2017, Int. J. Bifurc. Chaos.

[36]  Hongjun Cao,et al.  Stability and bifurcation analysis in a predator–prey system with Michaelis–Menten type predator harvesting , 2017 .

[37]  Shuxia Pan,et al.  Invasion speed of a predator-prey system , 2017, Appl. Math. Lett..

[38]  Chunrui Zhang,et al.  A delayed-diffusive predator-prey model with a ratio-dependent functional response , 2017, Commun. Nonlinear Sci. Numer. Simul..

[39]  Hong Liang,et al.  Interaction of excitable waves emitted from two defects by pulsed electric fields , 2018, Commun. Nonlinear Sci. Numer. Simul..

[40]  Xun Cao,et al.  Turing–Hopf bifurcation and spatiotemporal patterns in a diffusive predator–prey system with Crowley–Martin functional response , 2018, Nonlinear Analysis: Real World Applications.

[41]  Mengxin Chen,et al.  Hopf bifurcation and Turing instability in a predator–prey model with Michaelis–Menten functional response , 2018 .

[42]  Weihua Jiang,et al.  Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system , 2017, Discrete & Continuous Dynamical Systems - B.

[43]  Xiaoling Zou,et al.  A geometric method for asymptotic properties of the stochastic Lotka-Volterra model , 2019, Commun. Nonlinear Sci. Numer. Simul..