Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K–T boundary in Madagascar

The geographic and temporal origins of Madagascar's biota have long been in the center of debate. We reconstructed a time-tree including nearly all native nonflying and nonmarine vertebrate clades present on the island, from DNA sequences of two single-copy protein-coding nuclear genes (BDNF and RAG1) and a set of congruent time constraints. Reconstructions calculated with autocorrelated or independent substitution rates over clades agreed in placing the origins of the 31 included clades in Cretaceous to Cenozoic times. The two clades with sister groups in South America were the oldest, followed by those of a putative Asian ancestry that were significantly older than the prevalent clades of African ancestry. No colonizations from Asia occurred after the Eocene, suggesting that dispersal and vicariance of Asian/Indian groups were favored over a comparatively short period during, and shortly after, the separation of India and Madagascar. Species richness of clades correlates with their age but those clades that have a large proportion of species diversity in rainforests are significantly more species-rich. This finding suggests an underlying pattern of continuous speciation through time in Madagascar's vertebrates, with accelerated episodes of adaptive diversification in those clades that succeeded radiating into the rainforests.

[1]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[2]  M. Vences,et al.  Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar , 2001 .

[3]  C. Thébaud,et al.  Why does the biota of the Madagascar region have such a strong Asiatic flavour? , 2010, Cladistics : the international journal of the Willi Hennig Society.

[4]  A. Meyer,et al.  Natural colonization or introduction? Phylogeographical relationships and morphological differentiation of house geckos (Hemidactylus) from Madagascar , 2004 .

[5]  M. Suchard,et al.  Bayesian selection of continuous-time Markov chain evolutionary models. , 2001, Molecular biology and evolution.

[6]  D. Graur,et al.  Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. , 2004, Trends in genetics : TIG.

[7]  A. Meyer,et al.  Nuclear gene phylogeny of narrow-mouthed toads (Family: Microhylidae) and a discussion of competing hypotheses concerning their biogeographical origins. , 2007, Molecular phylogenetics and evolution.

[8]  H. Shaffer,et al.  Assessing Concordance of Fossil Calibration Points in Molecular Clock Studies: An Example Using Turtles , 2004, The American Naturalist.

[9]  Michael S. Y. Lee,et al.  Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. , 2007, Systematic biology.

[10]  L. Durrell Natural Change and Human Impact in Madagascar , 1998, Biodiversity & Conservation.

[11]  Kate E. Jones,et al.  The delayed rise of present-day mammals , 1990, Nature.

[12]  D. Krause,et al.  "The Late Cretaceous Vertebrate Fauna of Madagascar: Implications for Gondwanan Paleobiogeography." , 1999 .

[13]  A. Yoder,et al.  Single origin of Malagasy Carnivora from an African ancestor , 2003, Nature.

[14]  James C. Wilgenbusch,et al.  AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics , 2008, Bioinform..

[15]  J. Sparks,et al.  Phylogeny and biogeography of the Malagasy and Australasian rainbowfishes (Teleostei: Melanotaenioidei): Gondwanan vicariance and evolution in freshwater. , 2004, Molecular phylogenetics and evolution.

[16]  A. Hoelzel Molecular genetic analysis of populations: a practical approach. , 1993 .

[17]  B. Noonan,et al.  Dispersal and vicariance: the complex evolutionary history of boid snakes. , 2006, Molecular phylogenetics and evolution.

[18]  K. Hirsch Parataxonomic classification of fossil chelonian and gecko eggs , 1996 .

[19]  M. Vences,et al.  A phylogeny of the enigmatic Madagascan geckos of the genus Uroplatus (Squamata: Gekkonidae) , 2007 .

[20]  M. Vences,et al.  Eastward from Africa: palaeocurrent-mediated chameleon dispersal to the Seychelles islands , 2011, Biology Letters.

[21]  O. Madsen,et al.  Molecular phylogeny and divergence times of Malagasy tenrecs: Influence of data partitioning and taxon sampling on dating analyses , 2008, BMC Evolutionary Biology.

[22]  S. Ho,et al.  Accuracy of rate estimation using relaxed-clock models with a critical focus on the early metazoan radiation. , 2005, Molecular biology and evolution.

[23]  R. DeSalle,et al.  Molecular assessment of population differentiation and individual assignment potential of Nile crocodile (Crocodylus niloticus) populations , 2010, Conservation Genetics.

[24]  Christopher M. R. Kelly,et al.  Phylogeny, biogeography and classification of the snake superfamily Elapoidea: a rapid radiation in the late Eocene , 2009, Cladistics : the international journal of the Willi Hennig Society.

[25]  Jaa Nylander,et al.  MrModeltest 2.2. Program Distributed by the Author , 2004 .

[26]  J. Ali,et al.  Late Cretaceous bioconnections between Indo‐Madagascar and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis , 2011 .

[27]  Elisabetta Pierazzo,et al.  The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary , 2010, Science.

[28]  J. Gerlach,et al.  The evolutionary origin of Indian Ocean tortoises (Dipsochelys). , 2002, Molecular phylogenetics and evolution.

[29]  S. Tavaré,et al.  Dating primate divergences through an integrated analysis of palaeontological and molecular data. , 2011, Systematic biology.

[30]  A. Bauer,et al.  Homopholis and blaesodactylus (Squamata: Gekkonidae) revisited: New insights from a molecular phylogeny , 2007 .

[31]  D. Krause Fossil molar from a Madagascan marsupial , 2001, Nature.

[32]  J. Nagaraju,et al.  Late Cretaceous Vicariance in Gondwanan Amphibians , 2006, PloS one.

[33]  M. Vences,et al.  UvA-DARE ( Digital Academic Repository ) Geographical patterns of deep mitochondrial differentiation in widespread Malagasy reptiles , 2017 .

[34]  J. Wiens,et al.  The Causes Of Species Richness Patterns Across Space, Time, And Clades And The Role Of “Ecological Limits” , 2011, The Quarterly Review of Biology.

[35]  L. Vitt,et al.  Coming to America: multiple origins of New World geckos , 2011, Journal of evolutionary biology.

[36]  Sudhir Kumar,et al.  Performance of relaxed-clock methods in estimating evolutionary divergence times and their credibility intervals. , 2010, Molecular biology and evolution.

[37]  M. Vences,et al.  Vast underestimation of Madagascar's biodiversity evidenced by an integrative amphibian inventory , 2009, Proceedings of the National Academy of Sciences.

[38]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[39]  M. Vences,et al.  A multilocus phylogeny of Malagasy scincid lizards elucidates the relationships of the fossorial genera Androngo and Cryptoscincus. , 2009, Molecular phylogenetics and evolution.

[40]  S. Evans,et al.  A giant frog with South American affinities from the Late Cretaceous of Madagascar , 2008, Proceedings of the National Academy of Sciences.

[41]  D. Wake,et al.  Rapid diversification and dispersal during periods of global warming by plethodontid salamanders , 2007, Proceedings of the National Academy of Sciences.

[42]  B. Noonan,et al.  Vicariant Origin of Malagasy Reptiles Supports Late Cretaceous Antarctic Land Bridge , 2006, The American Naturalist.

[43]  R. Saltus,et al.  A new magnetic view of Alaska , 1999 .

[44]  K. Böhning‐Gaese,et al.  Range Size: Disentangling Current Traits and Phylogenetic and Biogeographic Factors , 2006, The American Naturalist.

[45]  C. Thébaud,et al.  Molecular phylogeography reveals island colonization history and diversification of western Indian Ocean sunbirds (Nectarinia: Nectariniidae). , 2003, Molecular phylogenetics and evolution.

[46]  C. Raxworthy,et al.  A molecular phylogeny of tortoises (Testudines: Testudinidae) based on mitochondrial and nuclear genes. , 2006, Molecular phylogenetics and evolution.

[47]  N. M. Brooke,et al.  A molecular timescale for vertebrate evolution , 1998, Nature.

[48]  M. Huber,et al.  Mammalian biodiversity on Madagascar controlled by ocean currents , 2010, Nature.

[49]  D. Wilson,et al.  Chronology, causes and progression of the Messinian salinity crisis , 1999, Nature.

[50]  S. Evans,et al.  A discoglossid frog (Amphibia: Anura) from the Middle Jurassic of England , 1990 .

[51]  A. Meyer,et al.  Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes. , 2000, The Journal of experimental zoology.

[52]  A. P. Raselimanana,et al.  Phylogeny and evolution of Malagasy plated lizards. , 2009, Molecular phylogenetics and evolution.

[53]  C. Raxworthy,et al.  Chameleon radiation by oceanic dispersal , 2002, Nature.

[54]  S. Hedges,et al.  Blindsnake evolutionary tree reveals long history on Gondwana , 2010, Biology Letters.

[55]  David R. Anderson,et al.  Model selection and inference : a practical information-theoretic approach , 2000 .

[56]  M. Vences,et al.  A fieldguide to the amphibians and reptiles of Madagascar : including mammals and freshwater fish , 1994 .

[57]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[58]  M. Vences,et al.  Madagascar as a model region of species diversification. , 2009, Trends in ecology & evolution.

[59]  D. Hillis,et al.  Phylogeny and biogeography of a cosmopolitan frog radiation: Late cretaceous diversification resulted in continent-scale endemism in the family ranidae. , 2006, Systematic biology.

[60]  J. Ali,et al.  Kerguelen Plateau and the Late Cretaceous southern‐continent bioconnection hypothesis: tales from a topographical ocean , 2009 .

[61]  M. Vences,et al.  Molecular phylogeny of hyperoliid treefrogs: biogeographic origin of Malagasy and Seychellean taxa and re-analysis of familial paraphyly , 2003 .

[62]  F. Grine,et al.  Cosmopolitanism among Gondwanan Late Cretaceous mammals , 1997, Nature.

[63]  A. Murray The fossil record and biogeography of the Cichlidae (Actinopterygii: Labroidei) , 2001 .

[64]  O. Madsen,et al.  Asynchronous colonization of Madagascar by the four endemic clades of primates, tenrecs, carnivores, and rodents as inferred from nuclear genes. , 2005, Systematic biology.

[65]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[66]  M. Miya,et al.  Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences , 2008, BMC Evolutionary Biology.

[67]  D. Posada,et al.  Multigene phylogeny of Malagasy day geckos of the genus Phelsuma. , 2009, Molecular phylogenetics and evolution.

[68]  K. Hoffmann,et al.  Multigene phylogenetic analysis of Lygodactylus dwarf geckos (Squamata: Gekkonidae). , 2010, Molecular phylogenetics and evolution.

[69]  A. Meyer,et al.  Phylogeny and comparative substitution rates of frogs inferred from sequences of three nuclear genes. , 2004, Molecular biology and evolution.

[70]  A. Meyer,et al.  Multiple overseas dispersal in amphibians , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[71]  A. Bauer,et al.  On the systematic status of the desert plated lizard (Angolosaurus skoogi): phylogenetic inference from DNA sequence analysis of the African Gerrhosauridae , 2003 .

[72]  A. Yoder,et al.  Has Vicariance or Dispersal Been the Predominant Biogeographic Force in Madagascar? Only Time Will Tell , 2006 .

[73]  D. Metzler,et al.  Integration of Bayesian molecular clock methods and fossil-based soft bounds reveals early Cenozoic origin of African lacertid lizards , 2009, BMC Evolutionary Biology.

[74]  S. O’Brien,et al.  A Molecular Phylogeny of Living Primates , 2011, PLoS genetics.

[75]  Mark A McPeek,et al.  Clade Age and Not Diversification Rate Explains Species Richness among Animal Taxa , 2007, The American Naturalist.

[76]  Effrey,et al.  Divergence Time and Evolutionary Rate Estimation with Multilocus Data , 2002 .

[77]  Johannes Müller,et al.  Four well-constrained calibration points from the vertebrate fossil record for molecular clock estimates. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[78]  H. Kishino,et al.  Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.

[79]  Bruce D. Patterson,et al.  Natural change and human impact in Madagascar , 1997 .

[80]  O. Rieppel,et al.  An ancestral turtle from the Late Triassic of southwestern China , 2008, Nature.

[81]  U. Fritz,et al.  Molecular phylogeny and divergence times of ancient South American and Malagasy river turtles (Testudines: Pleurodira: Podocnemididae) , 2008 .

[82]  M. Vences,et al.  Phylogeography of Ptychadena mascareniensis suggests transoceanic dispersal in a widespread African‐Malagasy frog lineage , 2004 .

[83]  J. Ali,et al.  Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166-35 Ma) , 2008 .

[84]  P. Tucker,et al.  Molecular Phylogeny and Biogeography of the Native Rodents of Madagascar (Muridae: Nesomyinae): A Test of the Single‐Origin Hypothesis , 1999, Cladistics : the international journal of the Willi Hennig Society.

[85]  D. Rabosky,et al.  Equilibrium speciation dynamics in a model adaptive radiation of island lizards , 2010, Proceedings of the National Academy of Sciences.

[86]  G. Yule,et al.  A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[87]  A. Meyer,et al.  Molecular phylogeny of Malagasy reed frogs, Heterixalus, and the relative performance of bioacoustics and color-patterns for resolving their systematics. , 2007, Molecular phylogenetics and evolution.

[88]  R. Hirayama Oldest known sea turtle , 1998, Nature.

[89]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[90]  W. J. Murphy,et al.  A molecular phylogeny for aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): the role of vicariance and the origins of annualism. , 1997, Molecular biology and evolution.

[91]  M. Vences,et al.  ORIGINAL ARTICLE: Freshwater paths across the ocean: molecular phylogeny of the frog Ptychadena newtoni gives insights into amphibian colonization of oceanic islands , 2006 .

[92]  I. Ineich,et al.  Phylogeny of the lizard subfamily Lygosominae (Reptilia: Scincidae), with special reference to the origin of the new world taxa. , 2003, Genes & genetic systems.

[93]  M. Vences,et al.  Molecular phylogenetic relationships among species of the Malagasy-Comoran gecko genus Paroedura (Squamata: Gekkonidae). , 2008, Molecular phylogenetics and evolution.

[94]  M. Vences,et al.  Multiple colonization of Madagascar and Socotra by colubrid snakes: evidence from nuclear and mitochondrial gene phylogenies , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[95]  M. Vences,et al.  Spatial and temporal arrival patterns of Madagascar's vertebrate fauna explained by distance, ocean currents, and ancestor type , 2012, Proceedings of the National Academy of Sciences.

[96]  M. Benton,et al.  Paleontological evidence to date the tree of life. , 2006, Molecular biology and evolution.

[97]  Diego San Mauro,et al.  Initial diversification of living amphibians predated the breakup of pangaea , 2005 .