Single-cell RNA-Seq reveals transcriptional heterogeneity and immune subtypes associated with disease activity in human myasthenia gravis

[1]  T. Cai,et al.  Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling , 2021, Nature Communications.

[2]  S. Teichmann,et al.  Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics , 2021, Science Immunology.

[3]  Lihua Zhang,et al.  Inference and analysis of cell-cell communication using CellChat , 2020, Nature Communications.

[4]  Zhaohui Luo,et al.  Peripheral B Cell Subsets in Autoimmune Diseases: Clinical Implications and Effects of B Cell-Targeted Therapies , 2020, Journal of immunology research.

[5]  Steffi Oesterreich,et al.  Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer. , 2019, Immunity.

[6]  K. Keeshan,et al.  The IκB-protein BCL-3 controls Toll-like receptor-induced MAPK activity by promoting TPL-2 degradation in the nucleus , 2019, Proceedings of the National Academy of Sciences.

[7]  S. Luo,et al.  HLA in myasthenia gravis: From superficial correlation to underlying mechanism. , 2019, Autoimmunity reviews.

[8]  Ravi S. Misra,et al.  T-bet Transcription Factor Promotes Antibody-Secreting Cell Differentiation by Limiting the Inflammatory Effects of IFN-γ on B Cells. , 2019, Immunity.

[9]  Olga Tanaseichuk,et al.  Metascape provides a biologist-oriented resource for the analysis of systems-level datasets , 2019, Nature Communications.

[10]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[11]  R. Shamilov,et al.  TNIP1 in Autoimmune Diseases: Regulation of Toll-like Receptor Signaling , 2018, Journal of immunology research.

[12]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[13]  R. Mantegazza,et al.  When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies , 2018, Therapeutic advances in neurological disorders.

[14]  S. Endo,et al.  The AP-1 transcription factor JunB is required for Th17 cell differentiation , 2017, Scientific Reports.

[15]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[16]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[17]  H. Spits,et al.  The Transcriptional Coactivator Bob1 Is Associated With Pathologic B Cell Responses in Autoimmune Tissue Inflammation , 2017, Arthritis & rheumatology.

[18]  M. You,et al.  Ligation of CD180 inhibits IFN-α signaling in a Lyn-PI3K-BTK-dependent manner in B cells , 2015, Cellular and Molecular Immunology.

[19]  M. Benatar,et al.  International consensus guidance for management of myasthenia gravis , 2016, Neurology.

[20]  Xiaoling Hu,et al.  STAT3 Signaling in B Cells Is Critical for Germinal Center Maintenance and Contributes to the Pathogenesis of Murine Models of Lupus , 2016, The Journal of Immunology.

[21]  A. Marx,et al.  Genetic heterogeneity within the HLA region in three distinct clinical subgroups of myasthenia gravis. , 2016, Clinical immunology.

[22]  Nils Erik Gilhus,et al.  Myasthenia gravis: subgroup classification and therapeutic strategies , 2015, The Lancet Neurology.

[23]  Fabian J. Theis,et al.  destiny: diffusion maps for large-scale single-cell data in R , 2015, Bioinform..

[24]  B. Diamond,et al.  Autoantibodies in systemic autoimmune diseases: specificity and pathogenicity. , 2015, The Journal of clinical investigation.

[25]  A. Thiel,et al.  IL‐17‐producing CD4+ T cells contribute to the loss of B‐cell tolerance in experimental autoimmune myasthenia gravis , 2015, European journal of immunology.

[26]  Michael Benatar,et al.  A genome-wide association study of myasthenia gravis. , 2015, JAMA neurology.

[27]  D. Merico,et al.  RelB deficiency causes combined immunodeficiency , 2015 .

[28]  Philip D. Hodgkin,et al.  The generation of antibody-secreting plasma cells , 2015, Nature Reviews Immunology.

[29]  S. Crotty A brief history of T cell help to B cells , 2015, Nature Reviews Immunology.

[30]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[31]  Hai-feng Li,et al.  Association study between IL-17A and IL-17F gene polymorphism and myasthenia gravis in Chinese patients , 2015, Neurological Sciences.

[32]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[33]  B. Lie,et al.  VAV1 and BAFF, via NFκB pathway, are genetic risk factors for myasthenia gravis , 2014, Annals of clinical and translational neurology.

[34]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[35]  A. Westendorf,et al.  HMGB1 conveys immunosuppressive characteristics on regulatory and conventional T cells. , 2012, International immunology.

[36]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[37]  J. Lindstrom,et al.  Antibody to acetylcholine receptor in myasthenia gravis: Prevalence, clinical correlates, and diagnostic value , 2011, Neurology.

[38]  C. Cardwell,et al.  A systematic review of population based epidemiological studies in Myasthenia Gravis , 2010, BMC neurology.

[39]  E. Taparowsky,et al.  Batf coordinates multiple aspects of B and T cell function required for normal antibody responses , 2010, The Journal of experimental medicine.

[40]  J. Thierry-Mieg,et al.  Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. , 2009, Immunity.

[41]  Hulun Li,et al.  Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis , 2009, Immunology.

[42]  K. Mills,et al.  Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. , 2009, Immunity.

[43]  J. Aarseth,et al.  Interleukin-10 promoter polymorphisms in myasthenia gravis , 2009, Journal of Neuroimmunology.

[44]  P. Christadoss,et al.  Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis. , 2009, Molecular immunology.

[45]  Xuebin Liu,et al.  Loss of STAT3 in CD4+ T Cells Prevents Development of Experimental Autoimmune Diseases , 2008, The Journal of Immunology.

[46]  K. Honda,et al.  The contribution of transcription factor IRF1 to the interferon-γ–interleukin 12 signaling axis and TH1 versus TH-17 differentiation of CD4+ T cells , 2008, Nature Immunology.

[47]  Paul Garside,et al.  Reversal of the TCR Stop Signal by CTLA-4 , 2006, Science.

[48]  L. Hennighausen,et al.  Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Buerstedde,et al.  Loss of Pax5 promotes plasma cell differentiation. , 2006, Immunity.

[50]  S. Akira,et al.  The Radioprotective 105/MD-1 Complex Links TLR2 and TLR4/MD-2 in Antibody Response to Microbial Membranes1 , 2005, The Journal of Immunology.

[51]  S. Nutt,et al.  Differential requirement for OBF-1 during antibody-secreting cell differentiation , 2005, The Journal of experimental medicine.

[52]  A. Roberts,et al.  TGF-β and Vitamin D3 Utilize Distinct Pathways to Suppress IL-12 Production and Modulate Rapid Differentiation of Human Monocytes into CD83+ Dendritic Cells , 2005, The Journal of Immunology.

[53]  L. Quartuccio,et al.  [B lymphocyte stimulator (BLyS) and monocytes: possible role in autoimmune diseases with a particular reference to rheumatoid arthritis]. , 2011, Reumatismo.

[54]  B. Eymard,et al.  Genetic control of autoantibody expression in autoimmune myasthenia gravis: role of the self-antigen and of HLA-linked loci , 2004, Genes and Immunity.

[55]  E. Wagner,et al.  JunD regulates lymphocyte proliferation and T helper cell cytokine expression , 2004, The EMBO journal.

[56]  K. Haskins,et al.  Expression of CD40 identifies a unique pathogenic T cell population in type 1 diabetes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  L. Grimaldi,et al.  IL-1 genes in myasthenia gravis: IL-1A −889 polymorphism associated with sex and age of disease onset , 2002, Journal of Neuroimmunology.

[58]  A. Sher,et al.  T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  D B Sanders,et al.  Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. , 2000, Neurology.

[60]  P. Tonali,et al.  Tumour necrosis factor beta gene polymorphisms in myasthenia gravis. , 1998, European journal of immunogenetics : official journal of the British Society for Histocompatibility and Immunogenetics.

[61]  J. Anastasi,et al.  Lymphadenopathy, splenomegaly, and altered immunoglobulin production in BCL3 transgenic mice , 1998, Oncogene.

[62]  C. Snapper,et al.  Nuclear Factor (NF)-κB2 (p100/p52) Is Required for Normal Splenic Microarchitecture and B Cell–mediated Immune Responses , 1998, The Journal of experimental medicine.

[63]  H. Garchon,et al.  Association of the AChRalpha-subunit gene (CHRNA), DQA1*0101, and the DR3 haplotype in myasthenia gravis. Evidence for a three-gene disease model in a subgroup of patients. , 1997, Journal of autoimmunity.

[64]  A. Rolink,et al.  B-cell-specif ic coactivator OBF-1/OCA-B/Bob1 required for immune response and germinal centre formation , 1996, Nature.

[65]  堀木 照美 Combinations of HLA-DPB1 and HLA-DQB1 alleles determine susceptibility to early-onset myasthenia gravis in Japan , 1995 .

[66]  H. Garchon,et al.  Involvement of human muscle acetylcholine receptor alpha-subunit gene (CHRNA) in susceptibility to myasthenia gravis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[67]  S. Gammeltoft,et al.  Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3. , 1987, Clinical and experimental immunology.

[68]  R. Tindall,et al.  Diagnosis and treatment of myasthenia gravis. , 1981, Comprehensive therapy.