Schwingungseigenschaften der Ossikel und der Cochlea und deren Bedeutung für unser Gehör

ZusammenfassungUntersuchungen der Bewegungen von Trommelfell und Steigbügel belegen, dass in den höheren Frequenzen komplexe, räumliche Vibrationsmuster auftreten, bei denen sich die einzelnen Elemente in sehr unterschiedlichen räumlichen Richtungen und in sehr unterschiedlichen Phasenlagen bewegen. Am Steigbügel sind eine kolbenförmige Bewegung sowie eine Rotation um die kurze und lange Steigbügelachse zu unterscheiden. Im Gegensatz zu den kolbenförmigen Schwingungen führen Rotationsbewegungen nicht zu einer Nettovolumenverschiebung der cochleären Flüssigkeit in einem gewissen Abstand von der Fußplatte. Deshalb wird aufgrund der gängigen Theorie des Hörens angenommen, dass solche Kippbewegungen keinen Einfluss auf das Gehör haben. In einer Reihe von Studien wurde jedoch qualitativ gezeigt, dass auch Kippbewegungen zu cochleärer Aktivität führen können. Weitere Forschung ist notwendig, um diesen Effekt zu quantifizieren.AbstractThe investigations of movements of the eardrum and stapes have shown that at higher frequencies, complex spatial vibration patterns occur in which the individual elements move in very different spatial directions and phase angles. For the stapes, such movements can be divided into piston-like and rotational movements around its short and long axis (tilting or rocking motions). Unlike the piston-like vibrations, rotational rocking motions do not lead to a net volume displacement of cochlear fluid at a certain distance from the footplate. Therefore, according to the current theory of hearing, it is assumed that such tilting movements have no effect on hearing. A number of studies have shown, however, that tilting motions can lead to cochlear activity. Further research is needed to quantify this effect.

[1]  A. Huber,et al.  A human temporal bone study of stapes footplate movement. , 1999, The American journal of otology.

[2]  Jae Hoon Sim,et al.  Complex Stapes Motions in Human Ears , 2010, Journal of the Association for Research in Otolaryngology.

[3]  Ugo Fisch,et al.  Intraoperative Assessment of Stapes Movement , 2001, The Annals of otology, rhinology, and laryngology.

[4]  A. Huber,et al.  The incudo-malleolar joint and sound transmission losses , 2002, Hearing Research.

[5]  W. T. Peake,et al.  Is the pressure difference between the oval and round windows the effective acoustic stimulus for the cochlea? , 1996, The Journal of the Acoustical Society of America.

[6]  Albrecht Eiber Mechanical Modeling and Dynamical Behavior of the Human Middle Ear , 1999, Audiology and Neurotology.

[7]  Ugo Fisch,et al.  Evaluation of Eardrum Laser Doppler Interferometry as a Diagnostic Tool , 2001, The Laryngoscope.

[8]  Peter Dallos,et al.  The Auditory Periphery Biophysics and Physiology , 1973 .

[9]  K B Hüttenbrink,et al.  The mechanics of the middle-ear at static air pressures: the role of the ossicular joints, the function of the middle-ear muscles and the behaviour of stapedial prostheses. , 1988, Acta oto-laryngologica. Supplementum.

[10]  Albrecht Eiber,et al.  The Effects of Complex Stapes Motion on the Response of the Cochlea , 2008, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[11]  Furong Ma,et al.  Round Window Atresia and its Effect on Sound Transmission , 2003, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[12]  Charles R. Steele,et al.  A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method , 2002, Hearing Research.

[13]  J F Ashmore,et al.  Finite element micromechanical modeling of the cochlea in three dimensions. , 1996, The Journal of the Acoustical Society of America.

[14]  G. Békésy,et al.  Experiments in Hearing , 1963 .

[15]  John J. Rosowski,et al.  Acoustic responses of the human middle ear , 2000, Hearing Research.