Enhancement of Textual Images Classification Using Segmented Visual Contents for Image Search Engine

This paper deals with the use of the dependencies between the textual indexation of an image (a set of keywords) and its visual indexation (colour and shape features). Experiments are realized on a corpus of photographs of a press agency (EDITING) and on another corpus of animals and landscape photographs (COREL). Both are manually indexed by keywords. Keywords of the news photos are extracted from a hierarchically structured thesaurus. Keywords of Corel corpus are semantically linked using WordNet database. A semantic clustering of the photos is constructed from their textual indexation. We use two different visual segmentation schemes. One is based on areas of interest, the other one on blobs of homogenous colour. Both segmentation schemes are used to evaluate the performance of a content-based image retrieval system combining textual and visual descriptions. Results of visuo-textual classifications show an improvement of 50% against classification using only textual information. Finally, we show how to apply this system in order to enhance a web image search engine. To this purpose, we illustrate a method allowing selecting only accurate images resulting from a textual query.

[1]  Thierry Pun,et al.  The Truth about Corel - Evaluation in Image Retrieval , 2002, CIVR.

[2]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Hervé Glotin,et al.  Rehaussement de la classification textuelle d ’ images par leur contenu visuel Enhancement of textual images classification using their visual content , 2003 .

[4]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Philippe Mulhem,et al.  Un modèle vectoriel étendu de recherche d'information adapté aux images , 2002, INFORSID.

[6]  G. N. Lance,et al.  A general theory of classificatory sorting strategies: II. Clustering systems , 1967, Comput. J..

[7]  Hervé Glotin Elaboration et comparaison de systèmes adaptatifs multi-flux de reconnaissance robuste de la parole : incorporation des indices de voisement et de localisation , 2001 .

[8]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[9]  B. S. Manjunath,et al.  Introduction to mpeg-7 , 2002 .

[10]  Ali Khenchaf,et al.  Traitement de l'information multimédia : recherche du média image , 2002, Ingénierie des Systèmes d Inf..

[11]  Christos Faloutsos,et al.  QBIC project: querying images by content, using color, texture, and shape , 1993, Electronic Imaging.

[12]  G. N. Lance,et al.  A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems , 1967, Comput. J..

[13]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[14]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[15]  Thomas S. Huang,et al.  Unifying Keywords and Visual Contents in Image Retrieval , 2002, IEEE Multim..

[16]  Jacques Le Maitre,et al.  Indexation et interrogation de photos de presse décrites en MPEG-7 et stockées dans une base de données XML , 2002, Ingénierie des Systèmes d Inf..

[17]  S. Sclaroff,et al.  Combining textual and visual cues for content-based image retrieval on the World Wide Web , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[18]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[19]  Michael E. Lesk,et al.  Computer Evaluation of Indexing and Text Processing , 1968, JACM.

[20]  C.-C. Jay Kuo,et al.  Introduction to Content‐Based Image Retrieval—Overview of Key Techniques , 2002 .