Ancient duplication of cereal genomes.

[1]  W. Lawrence The Secondary Association of Chromosomes , 1931 .

[2]  G. Stebbins Chromosomal variation and evolution. , 1966, Science.

[3]  L. G. Briarty,et al.  OBSERVATIONS ON THE SWOLLEN LATERAL ROOTS OF THE CYPERACEAE , 1973 .

[4]  M. Tester,et al.  The phenomenon of "nonmycorrhizal" plants , 1987 .

[5]  P. Ball Some aspects of the phytogeography of Carex , 1990 .

[6]  H. A. Orr,et al.  "Why Polyploidy is Rarer in Animals Than in Plants" Revisited , 1990, The American Naturalist.

[7]  J. Pate,et al.  Occurrence of Vesicular Mycorrhizal Fungi in Dryland Species of Restionaceae and Cyperaceae From South-West Western Australia , 1993 .

[8]  F. Chapin,et al.  Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge , 1993, Nature.

[9]  M. Yano,et al.  Conservation of Duplicated Segments between Rice Chromosome 11 and 12 , 1995 .

[10]  D. Soltis,et al.  Phylogenetic relationships between Juncaceae and Cyperaceae: insights from rbcL sequence data. , 1995 .

[11]  L. Abbott,et al.  Mycorrhizal fungus propagules in the jarrah forest: II. Spatial variability in inoculum levels. , 1995, The New phytologist.

[12]  J. Bruhl Sedge genera of the world: Relationships and a new classification of the Cyperaceae , 1995 .

[13]  G. Cuenca,et al.  Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural, disturbed and restored savannas in La Gran Sabana, Venezuela , 1996, Mycorrhiza.

[14]  A. Fitter,et al.  Evolutionary trends in root-microbe symbioses , 1996 .

[15]  Sally E Smith and David J Read Mycorrhizal Symbiosis 2nd ed , 1997 .

[16]  C. Scrimgeour,et al.  Carbon transfer between plants and its control in networks of arbuscular mycorrhizas , 1998 .

[17]  Keith R. Skene Cluster roots: some ecological considerations , 1998 .

[18]  R. Monson,et al.  SOIL AMINO ACID UTILIZATION AMONG SPECIES OF THE CYPERACEAE: PLANT AND SOIL PROCESSES , 1999 .

[19]  J. Bever,et al.  Mycorrhizal status of the genus Carex (Cyperaceae). , 1999, American journal of botany.

[20]  D. G. Brown,et al.  The origins of genomic duplications in Arabidopsis. , 2000, Science.

[21]  Keith R. Skene Cluster roots: model experimental tools for key biological problems. , 2001, Journal of experimental botany.

[22]  Mark C. Brundrett,et al.  Coevolution of roots and mycorrhizas of land plants. , 2002, The New phytologist.

[23]  Huanming Yang,et al.  A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica) , 2002, Science.

[24]  T. Muthukumar,et al.  Seasonality of vesicular-arbuscular mycorrhizae in sedges in a semi-arid tropical grassland , 2002 .

[25]  Klaas Vandepoele,et al.  The hidden duplication past of Arabidopsis thaliana , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Klaas Vandepoele,et al.  Evidence That Rice and Other Cereals Are Ancient Aneuploids Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.014019. , 2003, The Plant Cell Online.

[27]  J. P. Grime,et al.  Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil , 2003 .

[28]  C. Vance,et al.  Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. , 2003, The New phytologist.

[29]  Brad A. Chapman,et al.  Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events , 2003, Nature.

[30]  Daniel G Peterson,et al.  Structure and evolution of cereal genomes. , 2003, Current opinion in genetics & development.

[31]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[32]  J. P. Grime,et al.  Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. , 2004, The New phytologist.

[33]  Beat Keller,et al.  Ancestral genome duplication in rice. , 2004, Genome.

[34]  J. Pate,et al.  Application of the ecosystem mimic concept to the species-rich Banksia woodlands of Western Australia , 1999, Agroforestry Systems.

[35]  D. Read,et al.  Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza , 1980, Oecologia.

[36]  T. Muthukumar,et al.  Mycorrhiza in sedges—an overview , 2004, Mycorrhiza.

[37]  C. Powell Rushes and sedges are non-mycotrophic , 1975, Plant and Soil.

[38]  B. Lamont Structure, ecology and physiology of root clusters – a review , 2004, Plant and Soil.

[39]  Guillaume Blanc,et al.  Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes , 2004, The Plant Cell Online.

[40]  C. Ticconi,et al.  Short on phosphate: plant surveillance and countermeasures. , 2004, Trends in plant science.

[41]  S. Aikio,et al.  Mycorrhizal inoculum and performance of nonmycorrhizal Carex bigelowii and mycorrhizal Trientalis europaea , 2004 .

[42]  Y. Saeys,et al.  Building genomic profiles for uncovering segmental homology in the twilight zone. , 2004, Genome research.

[43]  A. Paterson,et al.  Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  H. Lambers,et al.  The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). , 2005, The New phytologist.

[45]  Jingchu Luo,et al.  Duplication and DNA segmental loss in the rice genome: implications for diploidization. , 2005, The New phytologist.

[46]  S. Arai,et al.  Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions , 1994, Theoretical and Applied Genetics.

[47]  Bailin Hao,et al.  Duplication and DNA segmental loss in rice genome and their implications for diploidization , 2005 .