Verification of a Multi-Time-Step Adams-Bashforth (MTSAB) Time-Marching Scheme Using External Verification Analysis (EVA)
暂无分享,去创建一个
[1] M. Nallasamy,et al. Parallelization Strategy for an Explicit Computational Aeroacoustics Code , 2002 .
[2] M.Y. Hussaini,et al. Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .
[3] S. Lele. Compact finite difference schemes with spectral-like resolution , 1992 .
[4] C. Tam,et al. Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .
[5] W. Habashi,et al. 2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics , 1998 .
[6] Christopher K. W. Tam,et al. Numerical Simulation of the Generation of Axisymmetric Mode Jet Screech Tones , 1998 .
[7] J. Williamson. Low-storage Runge-Kutta schemes , 1980 .
[8] A. Jameson. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings , 1991 .
[9] Vasanth Allampalli,et al. Fourth order Multi-Time-Stepping Adams-Bashforth (MTSAB) scheme for NASA Glenn Research Center’s Broadband Aeroacoustic Stator Simulation (BASS) Code , 2010 .
[10] R. Lewis,et al. Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .
[11] R. Hixon. Prefactored small-stencil compact schemes , 2000 .
[12] Manuel Calvo,et al. Minimum storage Runge-Kutta schemes for computational acoustics☆ , 2003 .
[13] M. Nallasamy,et al. High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics , 2006, J. Comput. Phys..