Verification of a Multi-Time-Step Adams-Bashforth (MTSAB) Time-Marching Scheme Using External Verification Analysis (EVA)

[1]  M. Nallasamy,et al.  Parallelization Strategy for an Explicit Computational Aeroacoustics Code , 2002 .

[2]  M.Y. Hussaini,et al.  Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .

[3]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[4]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[5]  W. Habashi,et al.  2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics , 1998 .

[6]  Christopher K. W. Tam,et al.  Numerical Simulation of the Generation of Axisymmetric Mode Jet Screech Tones , 1998 .

[7]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[8]  A. Jameson Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings , 1991 .

[9]  Vasanth Allampalli,et al.  Fourth order Multi-Time-Stepping Adams-Bashforth (MTSAB) scheme for NASA Glenn Research Center’s Broadband Aeroacoustic Stator Simulation (BASS) Code , 2010 .

[10]  R. Lewis,et al.  Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .

[11]  R. Hixon Prefactored small-stencil compact schemes , 2000 .

[12]  Manuel Calvo,et al.  Minimum storage Runge-Kutta schemes for computational acoustics☆ , 2003 .

[13]  M. Nallasamy,et al.  High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics , 2006, J. Comput. Phys..