GUIDED NANOSTRUCTURES USING ANODIZED ALUMINUM OXIDE TEMPLATES

In this paper, we review recent advances in nanotemplate fabrication using anodized aluminum oxide (AAO). In addition to self-ordered AAO nanoarrays, guided AAO self-assembly is of great interest since it can offer highly ordered, vertically aligned nanoporous templates which are suitable for various materials synthesis and alignment of nanosized structures. Moreover, structural modification of AAO nanoarrays by controlling fabrication process parameters are reviewed which can be applicable for advanced micro- and nanosystems. In this aspect, potential applications using AAO will be revealed in the aspects of self-ordered AAO, guided self-assembly of AAO, and biomedical and magnetic applications.

[1]  Kazuyuki Nishio,et al.  Fabrication of Ordered Arrays of Multiple Nanodots Using Anodic Porous Alumina as an Evaporation Mask , 2000 .

[2]  Ulrich Gösele,et al.  Spontaneous Current Oscillations during Hard Anodization of Aluminum under Potentiostatic Conditions , 2010 .

[3]  Sungho Jin,et al.  Stem cell fate dictated solely by altered nanotube dimension , 2009, Proceedings of the National Academy of Sciences.

[4]  H. Xing,et al.  Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization , 2010 .

[5]  Jung-Hyun Lee,et al.  Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization , 2005 .

[6]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[7]  K. Wada,et al.  Fabrication of Ideally Ordered Nanoporous Alumina Films and Integrated Alumina Nanotubule Arrays by High‐Field Anodization , 2005 .

[8]  P. Oteiza A mechanism for the stimulatory effect of aluminum on iron-induced lipid peroxidation. , 1994, Archives of biochemistry and biophysics.

[9]  Dusan Losic,et al.  Controlled drug release from porous materials by plasma polymer deposition. , 2010, Chemical communications.

[10]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[11]  T. Tamamura,et al.  Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina , 2001 .

[12]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[13]  N. Wüthrich Intrinsic stresses in anodic films on aluminium , 1981 .

[14]  Michael J Sailor,et al.  A label-free porous alumina interferometric immunosensor. , 2009, ACS nano.

[15]  D. H. Bradhurst,et al.  The Mechanical Properties of Thin Anodic Films on Aluminum , 1966 .

[16]  Kornelius Nielsch,et al.  Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization , 2007 .

[17]  A. Mayes,et al.  Block copolymer thin films : Physics and applications , 2001 .

[18]  Soo-Jin Park,et al.  A Novel Approach to Addressable 4 Teradot/in.2 Patterned Media , 2009 .

[19]  T. Veres,et al.  Novel Structure of AAO Film Fabricated by Constant Current Anodization , 2007 .

[20]  Chad A Mirkin,et al.  The evolution of dip-pen nanolithography. , 2004, Angewandte Chemie.

[21]  Ralf B. Wehrspohn,et al.  Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule , 2002 .

[22]  Joel K. W. Yang,et al.  Graphoepitaxy of Self-Assembled Block Copolymers on Two-Dimensional Periodic Patterned Templates , 2008, Science.

[23]  S. Shingubara,et al.  Self-Organization of a Porous Alumina Nanohole Array Using a Sulfuric/Oxalic Acid Mixture as Electrolyte , 2004 .

[24]  Sachiko Ono,et al.  Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution , 1997 .

[25]  Jongseung Yoon,et al.  Enabling nanotechnology with self assembled block copolymer patterns , 2003 .

[26]  Tejal A Desai,et al.  Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. , 2005, Journal of biomedical materials research. Part A.

[27]  M. Smith,et al.  Oxidative stress in Alzheimer's disease. , 2000, Biochimica et biophysica acta.

[28]  M. Fear,et al.  The potential of nanoporous anodic aluminium oxide membranes to influence skin wound repair. , 2009, Tissue engineering. Part A.

[29]  Frank Müller,et al.  Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina , 1998 .

[30]  Soojin Park,et al.  Fabrication of ordered anodic aluminum oxide using a solvent-induced array of block-copolymer micelles. , 2007, Small.

[31]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[32]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[33]  P. Wilshaw,et al.  Nano‐porous Alumina Coatings for Improved Bone Implant Interfaces , 2003 .

[34]  Martin Steinhart,et al.  Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. , 2008, Nature nanotechnology.

[35]  T. Tamamura,et al.  Ordered Mosaic Nanocomposites in Anodic Porous Alumina , 2003 .

[36]  Sungho Jin,et al.  Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. , 2009, Acta biomaterialia.

[37]  S. Ono,et al.  Defects in Porous Anodic Films Formed on High Purity Aluminum , 1991 .

[38]  A. Datta,et al.  Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces , 2001 .

[39]  Sachiko Ono,et al.  Controlling Factor of Self-Ordering of Anodic Porous Alumina , 2004 .

[40]  F. Keller,et al.  Structural Features of Oxide Coatings on Aluminum , 1953 .

[41]  Michael J Sailor,et al.  Gas adsorption and capillary condensation in nanoporous alumina films , 2008, Nanotechnology.

[42]  K. Shimizu,et al.  Residual flaws due to formation of oxygen bubbles in anodic alumina , 1999 .

[43]  J. Spatz,et al.  Block Copolymer Micelle Nanolithography , 2003 .

[44]  E. A. Cavalcanti-Adam,et al.  Block copolymer micelle nanolithography on non-conductive substrates , 2004 .

[45]  Dusan Losic,et al.  Self-ordered nanopore and nanotube platforms for drug delivery applications , 2009, Expert opinion on drug delivery.

[46]  Sungho Jin,et al.  Long-range ordered aluminum oxide nanotubes by nanoimprint-assisted aluminum film surface engineering , 2010 .

[47]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[48]  Sungho Jin,et al.  A New Nano-Platform for Drug Release via Nanotubular Aluminum Oxide , 2011 .

[49]  U. Gösele,et al.  A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. , 2008, Nano letters.

[50]  Tejal A Desai,et al.  Influence of nanoporous alumina membranes on long-term osteoblast response. , 2005, Biomaterials.

[51]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[52]  M. Reiche,et al.  Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp , 2003 .

[53]  G. C. Wood,et al.  The morphology and mechanism of formation of porous anodic films on aluminium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[54]  Zhi Huang,et al.  Nitric oxide red blood cell membrane permeability at high and low oxygen tension. , 2007, Nitric oxide : biology and chemistry.

[55]  Y. Mei,et al.  Formation mechanism of alumina nanotube array , 2003 .

[56]  A. Karma,et al.  Sustained drug release from non-eroding nanoporous templates. , 2010, Small.

[57]  M. Lohrengel,et al.  Thin anodic oxide layers on aluminium and other valve metals: high field regime , 1993 .

[58]  Sung Joon Park,et al.  Controlled drug release using nanoporous anodic aluminum oxide on stent , 2007 .

[59]  E. Thomas,et al.  Robust block copolymer mask for nanopatterning polymer films. , 2010, ACS nano.

[60]  Liang Zhao,et al.  Formation of anodic aluminum oxide with serrated nanochannels. , 2010, Nano letters.

[61]  D. Macdonald On the Formation of Voids in Anodic Oxide Films on Aluminum , 1993 .

[62]  C. Grimes,et al.  Controlled Molecular Release Using Nanoporous Alumina Capsules , 2003 .

[63]  Dong Ha Kim,et al.  Ordered arrays of <100>-oriented silicon nanorods by CMOS-compatible block copolymer lithography. , 2007, Nano letters.

[64]  Dusan Losic,et al.  Preparation of porous anodic alumina with periodically perforated pores. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[65]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[66]  Reinald Hillebrand,et al.  Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. , 2008, ACS nano.

[67]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[68]  T. C. Downie,et al.  Anodic oxide films on aluminum , 1969 .

[69]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[70]  Sungho Jin,et al.  Highly self-assembled nanotubular aluminum oxide by hard anodization , 2011 .

[71]  Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films , 2002 .

[72]  Weiping Cai,et al.  Highly ordered nanostructures with tunable size, shape and properties : A new way to surface nano-patterning using ultra-thin alumina masks , 2007 .

[73]  X. Bao,et al.  Individual Alumina Nanotubes. , 2001, Angewandte Chemie.

[74]  Hideki Masuda,et al.  Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution , 1998 .

[75]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[76]  Liang Li,et al.  Nanotube Arrays in Porous Anodic Alumina Membranes , 2009 .

[77]  L. Guo,et al.  Large area high density sub-20 nm SiO(2) nanostructures fabricated by block copolymer template for nanoimprint lithography. , 2009, ACS nano.

[78]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[79]  Robert M. Metzger,et al.  On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide , 1998 .

[80]  K. Shimizu,et al.  Inter–relationships between ionic transport and composition in amorphous anodic oxides , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[81]  Dongdong Li,et al.  Self-Assembly of Periodic Serrated Nanostructures , 2009 .

[82]  R. Erbel,et al.  Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits , 2003, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions.

[83]  Ralf B. Wehrspohn,et al.  Mechanism of guided self-organization producing quasi-monodomain porous alumina , 2005 .

[84]  M. Darder,et al.  Encapsulation of enzymes in alumina membranes of controlled pore size , 2006 .

[85]  P. Wilshaw,et al.  Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating , 2004, Journal of materials science. Materials in medicine.

[86]  K. Hebert,et al.  The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. , 2009, Nature materials.

[87]  Joachim P. Spatz,et al.  Micro‐Nanostructured Interfaces Fabricated by the Use of Inorganic Block Copolymer Micellar Monolayers as Negative Resist for Electron‐Beam Lithography , 2003 .

[88]  Soojin Park,et al.  Macroscopic 10-Terabit–per–Square-Inch Arrays from Block Copolymers with Lateral Order , 2009, Science.