Automatic discovery of cell types and microcircuitry from neural connectomics

Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists in a principled and probabilistically coherent manner, including connectivity, cell body location, and the spatial distribution of synapses. We show that the approach recovers known neuron types in the retina and enables predictions of connectivity, better than simpler algorithms. It also can reveal interesting structure in the nervous system of Caenorhabditis elegans and an old man-made microprocessor. Our approach extracts structural meaning from connectomics, enabling new approaches of automatically deriving anatomical insights from these emerging datasets. DOI: http://dx.doi.org/10.7554/eLife.04250.001

[1]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[2]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[4]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[5]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[6]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[7]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[8]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[9]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[10]  R. Passingham The frontal cortex: does size matter? , 2002, Nature Neuroscience.

[11]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[13]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[14]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[15]  G. Buzsáki,et al.  Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. , 2004, Journal of neurophysiology.

[16]  Peter Lennie,et al.  Coding of color and form in the geniculostriate visual pathway (invited review). , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[18]  Fiona E. N. LeBeau,et al.  Microcircuits in action – from CPGs to neocortex , 2005, Trends in Neurosciences.

[19]  Thomas L. Griffiths,et al.  Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.

[20]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Hans-Peter Kriegel,et al.  Infinite Hidden Relational Models , 2006, UAI.

[22]  S. Hestrin,et al.  Cell-type identity: a key to unlocking the function of neocortical circuits , 2009, Current Opinion in Neurobiology.

[23]  Brian Silverman,et al.  Visualizing a classic CPU in action: the 6502 , 2010, SIGGRAPH '10.

[24]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[25]  R. Yuste,et al.  Comparison Between Supervised and Unsupervised Classifications of Neuronal Cell Types: A Case Study , 2010, Developmental neurobiology.

[26]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[27]  Hassana K. Oyibo,et al.  Sequencing the Connectome , 2012, PLoS biology.

[28]  Thomas S. Richardson,et al.  Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (2006) , 2012, ArXiv.

[29]  Sean L. Hill,et al.  Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits , 2012, Proceedings of the National Academy of Sciences.

[30]  Henry Markram,et al.  A hierarchical structure of cortical interneuron electrical diversity revealed by automated statistical analysis. , 2013, Cerebral cortex.

[31]  R. Wilson,et al.  The Next-Generation Sequencing Revolution and Its Impact on Genomics , 2013, Cell.

[32]  Thomas Brendan Murphy,et al.  Variational Bayesian inference for the Latent Position Cluster Model , 2009, NIPS 2009.

[33]  Jeff W Lichtman,et al.  Why not connectomics? , 2013, Nature Methods.

[34]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[35]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[36]  Jüri Lember,et al.  Bridging Viterbi and posterior decoding: a generalized risk approach to hidden path inference based on hidden Markov models , 2014, J. Mach. Learn. Res..

[37]  Anima Anandkumar,et al.  Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..

[38]  H. Seung,et al.  Neuronal Cell Types and Connectivity: Lessons from the Retina , 2014, Neuron.

[39]  M. Cugmas,et al.  On comparing partitions , 2015 .