Interface-controlled fatigue cracking of SCS-6/Ti-22Al-23Nb “orthorhombic” titanium aluminide composite

[1]  Kwai S. Chan,et al.  The fatigue resistance of TiAl-based alloys , 1997 .

[2]  C. H. Ward,et al.  Layered Materials for Structural Applications. , 1996 .

[3]  Jenn‐Ming Yang,et al.  Fatigue damage evolution and property degradation of aSCS-6/Ti-22Al-23Nb“orthorhombic” titanium aluminide composite , 1996 .

[4]  T. Pollock,et al.  Effects of high temperature air and vacuum exposures on the room temperature tensile behavior of the (O + B2) titanium aluminide Ti-22Al-23Nb , 1996 .

[5]  M. L. Gambone SiC fiber strength after consolidation and heat-treatment in Ti-22Al-23Nb matrix composite , 1996 .

[6]  P. R. Smith,et al.  The effect of heat treatment on tensile and creep properties of “NEAT” TI-22Al-23Nb in the transverse orientation , 1995 .

[7]  W. Soboyejo,et al.  Interfaces and fatigue damage in a metastable beta titanium matrix composite , 1995 .

[8]  D. Schwartz,et al.  High-temperature ordered intermetallic alloys VI: Part 1. Materials Research Society symposium proceedings Volume 364 , 1995 .

[9]  C. Ni,et al.  Thermal stability of an SCS-6/Ti-22Al-23Nb composite , 1995 .

[10]  P. R. Smith,et al.  Comparison of orthorhombic and alpha-two titanium aluminides as matrices for continuous SiC-reinforced composites , 1994 .

[11]  D. P. Pope,et al.  High Temperature Aluminides and Intermetallics , 1993 .

[12]  D. Lal THE INFLUENCE OF STRENGTH AND STRESS RATIO ON SHORT-CRACK THRESHOLDS AND NON-PROPAGATING FATIGUE CRACKS , 1993 .

[13]  R. Mishra,et al.  Creep behaviour of an orthorhombic phase in a TiAlNb alloy , 1993 .

[14]  A. Evans,et al.  Matrix fatigue cracking in fiber composites , 1990 .

[15]  T. K. Nandi,et al.  A new ordered orthorhombic phase in a Ti3AlNb alloy , 1988 .

[16]  H. Atkinson,et al.  The role of the interface in the initiation of fatigue cracks in SCS-6/titanium MMCs , 1994 .

[17]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .