Stabilized finite element methods for solving the level set equation without reinitialization

New stabilized finite element methods are proposed for solving moving interface flow problems using the level set approach. The formulations enhance the interface resolution without the need to resort to the reinitialization process. These are established by adding a perturbation term that depends on the local residual of the Eikonal equation to the SUPG variational formulation of the level set equation. These methods are numerically evaluated for well-known benchmark flow problems and compared with a modified variant of the penalty method of Li et?al. (2005). The proposed stabilized finite element methods employing second-order time and space approximations are promising simple and accurate techniques for solving complex moving interface flows.

[1]  G. Buscaglia,et al.  A geometric mass-preserving redistancing scheme for the level set function , 2009 .

[2]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[3]  Nicola Parolini,et al.  Mass preserving finite element implementations of the level set method , 2006 .

[4]  M. Sussman A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles , 2003 .

[5]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[6]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[7]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[8]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[9]  Chunxiao Liu,et al.  New Variational Formulations for Level Set Evolution Without Reinitialization with Applications to Image Segmentation , 2011, Journal of Mathematical Imaging and Vision.

[10]  Nikolaus A. Adams,et al.  Anti-diffusion method for interface steepening in two-phase incompressible flow , 2011, J. Comput. Phys..

[11]  Heinz Pitsch,et al.  Combination of 3D unsplit forward and backward volume-of-fluid transport and coupling to the level set method , 2013, J. Comput. Phys..

[12]  W. Wall,et al.  An extended residual-based variational multiscale method for two-phase flow including surface tension , 2011 .

[13]  W. Wall,et al.  A face‐oriented stabilized Nitsche‐type extended variational multiscale method for incompressible two‐phase flow , 2015 .

[14]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[15]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[16]  Olivier Desjardins,et al.  A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows , 2013, J. Comput. Phys..

[17]  Christophe Prud'homme,et al.  Simulation of two-fluid flows using a finite element/level set method. Application to bubbles and vesicle dynamics , 2013, J. Comput. Appl. Math..

[18]  Olivier Faugeras,et al.  Reconciling Distance Functions and Level Sets , 2000, J. Vis. Commun. Image Represent..

[19]  Kishori M. Konwar,et al.  Fast Distance Preserving Level Set Evolution for Medical Image Segmentation , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[20]  Stefan Turek,et al.  THE EIKONAL EQUATION: NUMERICAL EFFICIENCY VS. ALGORITHMIC COMPLEXITY ON QUADRILATERAL GRIDS , 2005 .

[21]  Xianbao Duan,et al.  Optimal shape control of fluid flow using variational level set method , 2008 .

[22]  Hongkai Zhao,et al.  Fast Sweeping Methods for Eikonal Equations on Triangular Meshes , 2007, SIAM J. Numer. Anal..

[23]  J. Glimm Tracking of interfaces for fluid flow: Accurate methods for piecewise smooth problems. , 1982 .

[24]  Makoto Sueyoshi,et al.  Numerical simulation and experiment on dam break problem , 2010 .

[25]  Dmitri Kuzmin,et al.  An optimization-based approach to enforcing mass conservation in level set methods , 2014, J. Comput. Appl. Math..

[26]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[27]  Heinz Pitsch,et al.  An accurate conservative level set/ghost fluid method for simulating turbulent atomization , 2008, J. Comput. Phys..

[28]  Xianbao Duan,et al.  Shape-topology optimization for Navier-Stokes problem using variational level set method , 2008 .

[29]  J. Sethian METHODS FOR PROPAGATING INTERFACES , 1998 .

[30]  Mark Sussman,et al.  A hybrid level set-volume constraint method for incompressible two-phase flow , 2012, J. Comput. Phys..

[31]  Gretar Tryggvason,et al.  Computational Methods for Multiphase Flow: Frontmatter , 2007 .

[32]  P. Wesseling,et al.  A mass‐conserving Level‐Set method for modelling of multi‐phase flows , 2005 .

[33]  Oliver A. McBryan,et al.  A computational model for interfaces , 1985 .

[34]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[35]  Chunming Li,et al.  Distance Regularized Level Set Evolution and Its Application to Image Segmentation , 2010, IEEE Transactions on Image Processing.

[36]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[37]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[38]  G. Kreiss,et al.  A conservative level set method for two phase flow II , 2005, Journal of Computational Physics.

[39]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[40]  Erik Burman,et al.  Consistent SUPG-method for transient transport problems: Stability and convergence , 2010 .

[41]  A. Smolianski Numerical Modeling of Two-Fluid Interfacial Flows , 2001 .

[42]  C. K. Thornhill,et al.  Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[43]  Peter J. Mucha,et al.  A narrow-band gradient-augmented level set method for multiphase incompressible flow , 2014, J. Comput. Phys..

[44]  Pierre Saramito,et al.  Improving the mass conservation of the level set method in a finite element context , 2010 .

[45]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[46]  L YoungsD,et al.  Time-dependent multi-material flow with large fluid distortion. , 1982 .

[47]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[48]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[49]  Chunming Li,et al.  Level set evolution without re-initialization: a new variational formulation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[50]  A. Reusken,et al.  On the Accuracy of the Level Set SUPG Method for Approximating Interfaces , 2011 .

[51]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[52]  J. C. Martin An experimental study of the collapse of liquid column on a rigid horizontal plane , 1952 .