New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations.

[1]  Stephen A. Wells,et al.  Template-Based Geometric Simulation of Flexible Frameworks , 2012, Materials.

[2]  A. Corma,et al.  Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents , 2013, Proceedings of the National Academy of Sciences.

[3]  G. Oszlányi,et al.  Ab initio neutron crystallography by the charge flipping method. , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[4]  Gérard Férey,et al.  De Novo Prediction of Inorganic Structures Developed through Automated Assembly of Secondary Building Units (AASBU Method) , 2000 .

[5]  M. D. Foster,et al.  Toward understanding the thermodynamic viability of zeolites and related frameworks through a simple topological model , 2004 .

[6]  Wei Luo,et al.  Information-Theoretic Approach for the Discovery of Design Rules for Crystal Chemistry , 2012, J. Chem. Inf. Model..

[7]  Maria Cristina Burla,et al.  SIR2011: a new package for crystal structure determination and refinement , 2012 .

[8]  S. Sedlmaier,et al.  Unprecedented zeolite-like framework topology constructed from cages with 3-rings in a barium oxonitridophosphate. , 2011, Journal of the American Chemical Society.

[9]  V. Heine,et al.  Exotic distributions of rigid unit modes in the reciprocal spaces of framework aluminosilicates , 2007 .

[10]  M. D. Foster,et al.  Packing sticky hard spheres into rigid zeolite frameworks , 2009 .

[11]  J. Vermant,et al.  Investigation of the mechanism of colloidal silicalite-1 crystallization by using DLS, SAXS, and 29Si NMR spectroscopy. , 2010, Chemistry.

[12]  M. O'Keeffe,et al.  Uninodal 4-connected 3D nets. III. Nets with three or four 4-rings at a vertex , 1995 .

[13]  Zafer Evis,et al.  Prediction of hexagonal lattice parameters of various apatites by artificial neural networks , 2010 .

[14]  D. Bougeard,et al.  Computer modeling of the infrared spectra of zeolite catalysts , 2001 .

[15]  C. Catlow,et al.  Structure and Stability of Silica Species in SAPO Molecular Sieves , 1996 .

[16]  D. Brouwer Structure solution of network materials by solid-state NMR without knowledge of the crystallographic space group. , 2013, Solid state nuclear magnetic resonance.

[17]  Gervais Chapuis,et al.  Extending the charge-flipping method towards structure solution from incomplete data sets , 2007 .

[18]  Christodoulos A. Floudas,et al.  Rational design of shape selective separation and catalysis-II: Mathematical model and computational studies , 2006 .

[19]  V. Valtchev,et al.  Nucleation and Crystal Growth Features of EMT-Type Zeolite Synthesized from an Organic-Template-Free System , 2012 .

[20]  Using FOCUS to solve zeolite structures from three‐dimensional electron diffraction data , 2013 .

[21]  L. McCusker,et al.  Using electron microscopy to complement X-ray powder diffraction data to solve complex crystal structures. , 2009, Chemical communications.

[22]  Molecular Dynamics Simulations of the Diffusion of Small Chain Hydrocarbons in 8-Ring Zeolites † , 2011 .

[23]  A. Corma,et al.  Synthesis and characterization of the all-silica pure polymorph C and an enriched polymorph B intergrowth of zeolite beta. , 2006, Angewandte Chemie.

[24]  T. Ohsuna,et al.  Insights into the crystal growth mechanisms of zeolites from combined experimental imaging and theoretical studies. , 2007, Faraday discussions.

[25]  Peng Wu,et al.  Post-synthesis treatment gives highly stable siliceous zeolites through the isomorphous substitution of silicon for germanium in germanosilicates. , 2014, Angewandte Chemie.

[26]  G. Brunner Which frameworks will form SiO2 analogs? The significance of loop configurations , 1993 .

[27]  Jihong Yu,et al.  |(C4NH12)4|[M4Al12P16O64] (M = Co, Zn): new heteroatom-containing aluminophosphate molecular sieves with two intersecting 8-ring channels. , 2012, Inorganic chemistry.

[28]  C. Giacovazzo,et al.  EXPO2009: structure solution by powder data in direct and reciprocal space , 2009 .

[29]  S. Hansen A series of hypothetical building units generating open zeolite-type nets , 1990, The Science of Nature.

[30]  Jacek Klinowski,et al.  Chemically feasible hypothetical crystalline networks , 2004, Nature materials.

[31]  A re-examination of the structure of the germanosilicate zeolite SSZ-77 , 2011 .

[32]  L. McCusker Zeolite crystallography : structure determination in the absence of conventional single-crystal data , 1991 .

[33]  Robin K. Harris,et al.  NMR crystallography: the use of chemical shifts , 2004 .

[34]  S. Auerbach,et al.  Modeling Nanoparticle Formation during Early Stages of Zeolite Growth: A Low-Coordination Lattice Model of Template Penetration , 2010 .

[35]  Gregory J. Lewis,et al.  Formation pathway for LTA zeolite crystals synthesized via a charge density mismatch approach. , 2013, Journal of the American Chemical Society.

[36]  K. Funatsu,et al.  Development of system for selecting optimal zeolite–solvent combination for liquid chromatography: I. Constructing a database of solute sorption amounts , 2012 .

[37]  Sven Hovmöller,et al.  CRISP: crystallographic image processing on a personal computer , 1992 .

[38]  Joseph V. Smith,et al.  Enumeration of 4-connected 3-dimensional nets and classification of framework silicates: linkages from the two (52.8)2(5.82)1 2D nets , 1984 .

[39]  Jun Kong,et al.  Computational prediction of the formation of microporous aluminophosphates with desired structural features , 2010 .

[40]  Raul F. Lobo,et al.  Recent advances in zeolite science based on advance characterization techniques , 2014 .

[41]  F. Schüth,et al.  Monitoring the nucleation of zeolites by mass spectrometry. , 2007, Angewandte Chemie.

[42]  Lev Sarkisov,et al.  Computational structure characterisation tools in application to ordered and disordered porous materials , 2011 .

[43]  J. Pople,et al.  Study on Synthesis of TPA-Silicalite-1 from Initially Clear Solutions of Various Base Concentrations by in Situ Calorimetry, Potentiometry, and SAXS , 2004 .

[44]  Mark E. Davis,et al.  Thermochemical study of the stability of frameworks in high silica zeolites , 1993 .

[45]  M. Thorpe,et al.  PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Flexibility of ideal zeolite frameworks , 2010 .

[46]  A. Jansen,et al.  Kinetic Monte Carlo modeling of silicate oligomerization and early gelation. , 2012, Physical chemistry chemical physics : PCCP.

[47]  J. Maddox Crystals from first principles , 1988, Nature.

[48]  M. Palomino,et al.  Cation Gating and Relocation during the Highly Selective “Trapdoor” Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho , 2014 .

[49]  PUYAM S Singh,et al.  Light and X-ray scattering from the early growth stages of zeolite. A Part I , 1999 .

[50]  J. S. Evans,et al.  An X-ray diffraction and MAS NMR study of the thermal expansion properties of calcined siliceous ferrierite. , 2003, Journal of the American Chemical Society.

[51]  D. Dawson,et al.  A multinuclear solid-state NMR study of templated and calcined chabazite-type GaPO-34 , 2012 .

[52]  Krishna Rajan,et al.  Structure maps for A(I)4A(II)6(BO4)6X2 apatite compounds via data mining. , 2012, Acta crystallographica. Section B, Structural science.

[53]  C. Gilmore,et al.  Direct electron crystallographic determination of zeolite zonal structures. , 2007, Ultramicroscopy.

[54]  Mark E. Davis,et al.  A Model for the Structure of the Large-Pore Zeolite SSZ-31 , 1997 .

[55]  Michael O'Keeffe,et al.  What do we know about three-periodic nets? , 2005 .

[56]  Jean-Louis Paillaud,et al.  IM-16: A new microporous germanosilicate with a novel framework topology containing d4r and mtw composite building units , 2009 .

[57]  Sven Hovmöller,et al.  Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing , 2013, Journal of applied crystallography.

[58]  U. Kolb,et al.  Towards automated diffraction tomography. Part II--Cell parameter determination. , 2008, Ultramicroscopy.

[59]  W. Janzen,et al.  High Throughput Screening , 2016, Methods in Molecular Biology.

[60]  Baohui Li,et al.  Studies on the design of a novel topological structure of a molecular sieve with extra-large open pores , 1996 .

[61]  X. Bao,et al.  In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. , 2012, Chemical Society reviews.

[62]  D. Brouwer,et al.  Optimization, standardization, and testing of a new NMR method for the determination of zeolite host-organic guest crystal structures. , 2006, Journal of the American Chemical Society.

[63]  L. McCusker,et al.  The application of structure envelopes in structure determination from powder diffraction data , 2002 .

[64]  V. Heine,et al.  Insights into zeolite behaviour from the rigid unit mode model , 1997 .

[65]  S. Zones,et al.  SSZ-52, a zeolite with an 18-layer aluminosilicate framework structure related to that of the DeNOx catalyst Cu-SSZ-13. , 2013, Journal of the American Chemical Society.

[66]  M. D. Foster,et al.  Flexibility As an Indicator of Feasibility of Zeolite Frameworks , 2012 .

[67]  G. D. Price,et al.  Relative stability of zeolite frameworks from calculated energetics of known and theoretical structures , 1989 .

[68]  Rajamani Krishna,et al.  Describing the Diffusion of Guest Molecules Inside Porous Structures , 2009 .

[69]  M. O'Keeffe,et al.  Dense and rare four-connected nets , 1991 .

[70]  Sankar Nair,et al.  Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations. , 2010, Journal of the American Chemical Society.

[71]  S. Zones,et al.  Unraveling the Perplexing Structure of the Zeolite SSZ-57 , 2011, Science.

[72]  Stefano Curtarolo,et al.  High-throughput and data mining with ab initio methods , 2004 .

[73]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[74]  Yun Liu,et al.  A coupled electron diffraction and rigid unit mode (RUM) study of the crystal chemistry of some zeotypic AlPO4 compounds , 2005 .

[75]  S. Auerbach,et al.  New insights into zeolite formation from molecular modeling , 2005 .

[76]  J. Gale,et al.  ZeoTsites: a code for topological and crystallographic tetrahedral sites analysis in zeolites and zeotypes , 2001 .

[77]  Jihong Yu,et al.  FraGen: a computer program for real‐space structure solution of extended inorganic frameworks , 2012 .

[78]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: natural tilings for nets. , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[79]  X. Zou,et al.  Structural Determination of Ordered Porous Solids by Electron Crystallography , 2014 .

[80]  K. J Andries,et al.  Opening, stellation and handle replacement of edges of the cube, tetrahedron and hexagonal prism: application to 3-connected three-dimensional polyhedra and (2, 3)-connected polyhedral units in three-dimensional nets , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[81]  M. Suchomel,et al.  An NMR-driven crystallography strategy to overcome the computability limit of powder structure determination: a layered aluminophosphate case. , 2013, Chemistry.

[82]  M. D. Foster,et al.  Hypothetical binodal zeolitic frameworks. , 2005, Acta crystallographica. Section B, Structural science.

[83]  V. Blatov,et al.  The Zeolite Conundrum: Why Are There so Many Hypothetical Zeolites and so Few Observed? A Possible Answer from the Zeolite-Type Frameworks Perceived As Packings of Tiles , 2013 .

[84]  K. B. Yoon,et al.  A novel class of nonlinear optical materials based on host-guest composites: zeolites as inorganic crystalline hosts. , 2012, Chemical communications.

[85]  L. McCusker,et al.  Electron crystallography as a complement to X-ray powder diffraction techniques , 2012 .

[86]  Jihong Yu,et al.  Heteroatom-stabilized chiral framework of aluminophosphate molecular sieves. , 2009, Angewandte Chemie.

[87]  M. Deem,et al.  Fluctuations in zeolite aperture dimensions simulated by crystal dynamics , 1992 .

[88]  M. Mora-Fonz,et al.  Modeling Aqueous Silica Chemistry in Alkali Media , 2007 .

[89]  G. Bellussi,et al.  New trends in the synthesis of crystalline microporous materials , 2013 .

[90]  R. Lobo,et al.  Zeolite beta mechanisms of nucleation and growth , 2011 .

[91]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[92]  A. Jansen,et al.  Mechanism of the initial stage of silicate oligomerization. , 2011, Journal of the American Chemical Society.

[93]  F. Liebau Ordered microporous and mesoporous materials with inorganic hosts: definitions of terms, formula notation, and systematic classification , 2003 .

[94]  A. Corma,et al.  Zeolite-based photocatalysts. , 2004, Chemical communications.

[95]  U. Schwingenschlögl,et al.  Computer-Aided Modeling of Aluminophosphate Zeolites As Packings of Building Units , 2012 .

[96]  I. Chan,et al.  Synthesis and Structure Solution of Zeolite SSZ-65 , 2007 .

[97]  M. Thorpe,et al.  The flexibility window in zeolites , 2006, Nature materials.

[98]  Timothy O. Drews,et al.  A mathematical model for crystal growth by aggregation of precursor metastable nanoparticles. , 2005, The journal of physical chemistry. B.

[99]  A. Navrotsky,et al.  Thermochemistry of microporous and mesoporous materials. , 2009, Chemical reviews.

[100]  Energetics of microporous materials , 1995 .

[101]  Michael W. Deem,et al.  Toward a Database of Hypothetical Zeolite Structures , 2006 .

[102]  D. Dorset Electron crystallography of zeolites. 3. Calcined MCM-22 and MCM-49, a case of subtle differences , 2003 .

[103]  R. Lobo,et al.  Disorder in Zeolite SSZ-31 Described on the Basis of One-Dimensional Building Units , 2003 .

[104]  C. Richard A. Catlow,et al.  High-performance computing in the chemistry and physics of materials , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[105]  Andrew L. Goodwin,et al.  Applications of pair distribution function methods to contemporary problems in materials chemistry , 2011 .

[106]  R. Broach,et al.  Structures of the Kplus and NH4 Forms of Linde J , 2011 .

[107]  D. Brouwer An efficient peak assignment algorithm for two-dimensional NMR correlation spectra of framework structures. , 2003, Journal of magnetic resonance.

[108]  L. Stixrude,et al.  Rings, topology, and the density of tectosilicates , 1990 .

[109]  Vladimiros Nikolakis,et al.  Zeolite Growth by Addition of Subcolloidal Particles: Modeling and Experimental Validation , 2000 .

[110]  A. T. Davies,et al.  An in Situ Energy-Dispersive X-ray Diffraction Study of the Hydrothermal Crystallization of Zeolite A. 1. Influence of Reaction Conditions and Transformation into Sodalite , 2001 .

[111]  M. Fischer,et al.  Identifying Promising Zeolite Frameworks for Separation Applications: A Building-Block-Based Approach , 2013 .

[112]  V. Valtchev,et al.  Evidences for zeolite nucleation at the solid-liquid interface of gel cavities. , 2005, Journal of the American Chemical Society.

[113]  R. Halladj,et al.  Effects of ultrasound on the synthesis of zeolites: a review , 2013, Journal of Porous Materials.

[114]  Gérard Férey,et al.  Computational design and prediction of interesting not-yet-synthesized structures of inorganic materials by using building unit concepts. , 2002, Chemistry.

[115]  W. Steurer,et al.  Ab initio reconstruction of difference densities by charge flipping. , 2011, Acta crystallographica. Section A, Foundations of crystallography.

[116]  Qisheng Huo,et al.  Chemistry of Zeolites and Related Porous Materials , 2007 .

[117]  Y. Hwang,et al.  Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation? , 2007, Chemistry.

[118]  M. Haranczyk,et al.  From rays to structures: Representation and selection of void structures in zeolites using stochastic methods , 2013 .

[119]  W. Schnick,et al.  LixH12-x-y+z[P12OyN24-y]Clz--an oxonitridophosphate with a zeolitelike framework structure composed of 3-rings. , 2003, Angewandte Chemie.

[120]  D. Keen,et al.  Phase transitions in tridymite studied using ‘Rigid Unit Mode’ theory, Reverse Monte Carlo methods and molecular dynamics simulations , 2000, Mineralogical Magazine.

[121]  V. Valtchev,et al.  Investigation of the Crystallization Stages of LTA-Type Zeolite by Complementary Characterization Techniques , 2003 .

[122]  Timothy O. Drews,et al.  Mechanistic principles of nanoparticle evolution to zeolite crystals , 2006, Nature materials.

[123]  V. Blatov,et al.  Natural Tilings for Zeolite-Type Frameworks , 2010 .

[124]  Michael W Deem,et al.  A database of new zeolite-like materials. , 2011, Physical chemistry chemical physics : PCCP.

[125]  David Olson,et al.  Atlas of Zeolite Framework Types , 2007 .

[126]  D. Akporiaye Structural relationships of zeolite frameworks: 5-ring zeolites , 1989 .

[127]  V. Heine,et al.  Anatomy of a structural phase transition: theoretical analysis of the displacive phase transition in quartz and other silicates , 1999 .

[128]  S. Hansen Expanding zeolite-type nets , 1990, Nature.

[129]  S. Wells,et al.  Rigid unit modes at high pressure: an explorative study of a fibrous zeolite-like framework with EDI topology , 2004 .

[130]  Simon J L Billinge,et al.  Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. , 2004, Chemical communications.

[131]  Christodoulos A. Floudas,et al.  Rational design of shape selective separation and catalysis—I: Concepts and analysis , 2006 .

[132]  A. V. D. Lee Charge flipping for routine structure solution , 2013 .

[133]  Ana Palčić,et al.  New insights on the autocatalytic nucleation in zeolite A synthesis , 2011 .

[134]  Igor Rivin,et al.  A systematic topological search for the framework of ZSM‐10 , 2005 .

[135]  A. Jansen,et al.  Structure-Directing Role of Counterions in the Initial Stage of Zeolite Synthesis , 2011 .

[136]  P. Oleynikov eMap and eSlice: a software package for crystallographic computing , 2011 .

[137]  Joseph V. Smith,et al.  (4;2)-connected three-dimensional nets related to the mixed-coordinated framework structures AlPO4-15, AlPO4-CJ2 and AlPO4-12 , 1994 .

[138]  C. M. Freeman,et al.  Crystal structure solution and prediction via global and local optimization , 1999 .

[139]  W. M. Meier,et al.  Framework density distribution of zeolite-type tetrahedral nets , 1989, Nature.

[140]  P. Lightfoot,et al.  Variable-temperature microcrystal X-ray diffraction studies of negative thermal expansion in the pure silica zeolite IFR. , 2001, Journal of the American Chemical Society.

[141]  Christopher J. Gilmore,et al.  Maximum Entropy and Bayesian Statistics in Crystallography: a Review of Practical Applications , 1996 .

[142]  Avelino Corma,et al.  From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. , 1997, Chemical reviews.

[143]  Anmin Zheng,et al.  Brønsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. , 2007, Journal of the American Chemical Society.

[144]  A. Burton,et al.  The synthesis, characterization, and structure solution of SSZ-56: An extreme example of isomer specificity in the structure direction of zeolites , 2009 .

[145]  Lynne B. McCusker,et al.  Zeolite structure determination from powder diffraction data: applications of the FOCUS method , 1999 .

[146]  M. Vallet‐Regí,et al.  DIRECT PHASING IN ELECTRON CRYSTALLOGRAPHY : AB INITIO DETERMINATION OF A NEW MCM-22 ZEOLITE STRUCTURE , 1995 .

[147]  M. Hartmann,et al.  Transition-metal ions in aluminophosphate and silicoaluminophosphate molecular sieves: location, interaction with adsorbates and catalytic properties. , 1999, Chemical reviews.

[148]  Alexandra M. Z. Slawin,et al.  Novel Large-Pore Aluminophosphate Molecular Sieve STA-15 Prepared Using the Tetrapropylammonium Cation As a Structure Directing Agent , 2010 .

[149]  V. Valtchev,et al.  Effect of the silica source on the formation of nanosized silicalite-1: an in situ dynamic light scattering study , 2002 .

[150]  R. Sanz,et al.  Synthesis and crystallization mechanism of zeolite TS-2 by microwave and conventional heating , 2004 .

[151]  Maciej Haranczyk,et al.  Automatic Structure Analysis in High-Throughput Characterization of Porous Materials. , 2010, Journal of chemical theory and computation.

[152]  Jacek Klinowski,et al.  Hypothetical Zeolitic Frameworks: In Search of Potential Heterogeneous Catalysts , 2008 .

[153]  S. Woodley Prediction of inorganic crystal framework structures , 2004 .

[154]  Sankar Nair,et al.  Pore size analysis of >250,000 hypothetical zeolites. , 2011, Physical chemistry chemical physics : PCCP.

[155]  Igor Kuzmanovski,et al.  Crystal Structure Prediction in Orthorhombic ABO 3 Perovskites by Multiple Linear Regression and Artificial Neural Networks , 2007 .

[156]  Pinliang Ying,et al.  In situ UV Raman spectroscopic studies on the synthesis mechanism of zeolite X. , 2008, Chemistry.

[157]  Manuel Moliner,et al.  Rational design and HT techniques allow the synthesis of new IWR zeolite polymorphs. , 2006, Journal of the American Chemical Society.

[158]  M. Weiss,et al.  Solid state NMR of porous materials : zeolites and related materials. , 2012, Topics in current chemistry.

[159]  Anthony L. Spek,et al.  Journal of , 1993 .

[160]  G. Kramer,et al.  Zeolites versus Aluminosilicate Clusters: The Validity of a Local Description , 1991 .

[161]  A. Corma,et al.  A new aluminosilicate molecular sieve with a system of pores between those of ZSM-5 and beta zeolite. , 2011, Journal of the American Chemical Society.

[162]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[163]  Vincent Favre-Nicolin,et al.  Direct space methods of structure determination from powder diffraction: principles, guidelines and perspectives , 2007 .

[164]  Miao Qi,et al.  Sample-expand method for predicting the specified structure of microporous aluminophosphate , 2014 .

[165]  N. Bats,et al.  A zeolitic material with a three-dimensional pore system formed by straight 12- and 10-ring channels synthesized with an imidazolium derivative as structure-directing agent. , 2010, Journal of the American Chemical Society.

[166]  S. Hovmöller,et al.  Collecting 3D electron diffraction data by the rotation method , 2010 .

[167]  V. Heine,et al.  How Floppy Modes Give Rise to Adsorption Sites in Zeolites , 1997 .

[168]  Gábor Oszlányi,et al.  The charge flipping algorithm. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[169]  F. Meneau,et al.  New insights into the formation of microporous materials by in situ scattering techniques. , 2007, Faraday discussions.

[170]  C. Catlow,et al.  Oligomerization and cyclization processes in the nucleation of microporous silicas. , 2005, Angewandte Chemie.

[171]  Richard L. Martin,et al.  haracterization and comparison of pore landscapes in crystalline orous materials , 2013 .

[172]  Scott M Woodley,et al.  The prediction of inorganic crystal framework structures using excluded regions within a genetic algorithm approach. , 2004, Chemical communications.

[173]  H. García,et al.  Generation and reactions of organic radical cations in zeolites. , 2002, Chemical reviews.

[174]  R. A. Santen,et al.  The framework basicity of zeolites , 2012 .

[175]  M. Zwijnenburg,et al.  Dramatic differences between the energy landscapes of SiO(2) and SiS(2) zeotype materials. , 2007, Journal of the American Chemical Society.

[176]  V. Ramaswamy,et al.  High temperature thermal expansion behavior of silicalite-1 molecular sieve: in situ HTXRD study , 2007 .

[177]  D. Xie,et al.  Optimized Synthesis and Structural Characterization of the Borosilicate MCM-70 , 2009 .

[178]  M. O'keeffe,et al.  Germanate Zeolites: Contrasting the Behavior of Germanate and Silicate Structures Built from Cubic T8O20 Units (T=Ge or Si) , 1999 .

[179]  J. M. Newsam,et al.  Determination of 4-connected framework crystal structures by simulated annealing , 1989, Nature.

[180]  D. Dorset The crystal structure of ZSM-10, a powder X-ray and electron diffraction study , 2006 .

[181]  D. Creaser,et al.  The nucleation period for crystallization of colloidal TPA-silicalite-1 with varying silica source , 2000 .

[182]  C. Gilmore,et al.  Electron crystallography of zeolites--the MWW family as a test of direct 3D structure determination. , 2005, Acta crystallographica. Section A, Foundations of crystallography.

[183]  P. A. Cheeseman,et al.  Computational Discovery of New Zeolite-Like Materials , 2009 .

[184]  S. Sedlmaier,et al.  An unprecedented AB2 tetrahedra network structure type in a high-pressure phase of phosphorus oxonitride (PON). , 2012, Angewandte Chemie.

[185]  Jihong Yu,et al.  A gallogermanate zeolite constructed exclusively by three-ring building units. , 2011, Angewandte Chemie.

[186]  S. Auerbach,et al.  Emergence of Zeolite Analogs and other Microporous Crystals in an Atomic Lattice Model of Silica and Related Materials. , 2012, The journal of physical chemistry letters.

[187]  M. O'Keeffe,et al.  Uninodal 4‐connected 3D nets. II. Nets with 3‐rings , 1992 .

[188]  S. Krivovichev,et al.  Topological complexity of crystal structures: quantitative approach. , 2012, Acta crystallographica. Section A, Foundations of crystallography.

[189]  Alexey A. Sokol,et al.  Structure Prediction of Inorganic Nanoparticles with Predefined Architecture using a Genetic Algorithm , 2004 .

[190]  C. S. Cundy,et al.  Some observations on the preparation and properties of colloidal silicalites. Part I: synthesis of colloidal silicalite-1 and titanosilicalite-1 (TS-1) , 2003 .

[191]  D. Dorset Electron crystallography of zeolites. 2. Mordenite and the role of secondary scattering on structure determination , 2003 .

[192]  Rajamani Krishna,et al.  Diffusion in porous crystalline materials. , 2012, Chemical Society reviews.

[193]  S. Wells,et al.  Finding best-fit polyhedral rotations with geometric algebra , 2002 .

[194]  Roman M. Balabin,et al.  Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? , 2011, Physical chemistry chemical physics : PCCP.

[195]  Maciej Haranczyk,et al.  Chemical Hieroglyphs: Abstract Depiction of Complex Void Space Topology of Nanoporous Materials , 2010, J. Chem. Inf. Model..

[196]  S. Hyde,et al.  The asymptotic behavior of coordination sequences for the 4-connected nets of zeolites and related structures , 1996 .

[197]  D. Creaser,et al.  Aging effects on the nucleation and crystallization kinetics of colloidal TPA-silicalite-1 , 2001 .

[198]  Christodoulos A Floudas,et al.  Cost-effective CO2 capture based on in silico screening of zeolites and process optimization. , 2013, Physical chemistry chemical physics : PCCP.

[199]  V. Heine,et al.  Rigid-unit phonon modes and structural phase transitions in framework silicates , 1996 .

[200]  V. Valtchev,et al.  Tailored crystalline microporous materials by post-synthesis modification. , 2013, Chemical Society reviews.

[201]  Melkon Tatlier,et al.  Artificial neural network methods for the prediction of framework crystal structures of zeolites from XRD data , 2011, Neural Computing and Applications.

[202]  Lynne B. McCusker,et al.  Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts(IUPAC Recommendations 2001) , 2001 .

[203]  D. Vlachos,et al.  Silica self-assembly and synthesis of microporous and mesoporous silicates. , 2006, Chemistry.

[204]  Iosif I. Vaisman,et al.  Machine learning approach for structure-based zeolite classification , 2009 .

[205]  Avelino Corma,et al.  Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes , 2011 .

[206]  F. Taulelle,et al.  NMR crystallography driven structure determination: nanoporous materials , 2013 .

[207]  Michael O'Keeffe,et al.  Rigid, flexible and impossible zeolite and related structures , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[208]  V. Valtchev,et al.  Framework stabilization of Ge-rich zeolites via postsynthesis alumination. , 2009, Journal of the American Chemical Society.

[209]  Martin T. Dove,et al.  Geometrical Origin and Theory of Negative Thermal Expansion in Framework Structures , 1999 .

[210]  Mark E. Davis,et al.  Thermochemical Study of the Relative Stability of Dense and Microporous Aluminophosphate Frameworks , 1995 .

[211]  S. Hovmöller,et al.  Structure of the Polycrystalline Zeolite Catalyst IM-5 Solved by Enhanced Charge Flipping , 2007, Science.

[212]  Petr Nachtigall,et al.  A family of zeolites with controlled pore size prepared using a top-down method. , 2013, Nature chemistry.

[213]  Michel Waroquier,et al.  Design of zeolite by inverse sigma transformation. , 2012, Nature materials.

[214]  Michael O'Keeffe,et al.  A generation of framework structures for the tectosilicates using a molecular-based potential energy function and simulated annealing strategies , 1999 .

[215]  Christian Baerlocher,et al.  Complex zeolite structure solved by combining powder diffraction and electron microscopy , 2006, Nature.

[216]  Mark E. Davis,et al.  Little energetic limitation to microporous and mesoporous materials , 1995 .

[217]  A. Jansen,et al.  Multi-level Modeling of Silica–Template Interactions During Initial Stages of Zeolite Synthesis , 2009 .

[218]  Yi Li,et al.  Combining structure modeling and electron microscopy to determine complex zeolite framework structures. , 2008, Angewandte Chemie.

[219]  Baohui Li,et al.  Development of three-dimensional, four-connected framework structures with extra-large open pores , 1999 .

[220]  M. O'keeffe,et al.  Uninodal 4‐connected 3D nets. I. Nets without 3‐ or 4‐rings , 1992 .

[221]  K. Shankland,et al.  Structure determination from powder diffraction data. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[222]  Manuel Moliner,et al.  Prediction of ITQ-21 Zeolite Phase Crystallinity: Parametric Versus Non-parametric Strategies , 2007 .

[223]  Maciej Haranczyk,et al.  Navigating molecular worms inside chemical labyrinths , 2009, Proceedings of the National Academy of Sciences.

[224]  Guy Jennings,et al.  Determining Quantitative Kinetics and the Structural Mechanism for Particle Growth in Porous Templates , 2011 .

[225]  D. Keen,et al.  Rigid Unit Modes in Framework Structures: Theory, Experiment and Applications , 2000 .

[226]  R. Arletti,et al.  A new framework topology in the dehydrated form of zeolite levyne , 2013 .

[227]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[228]  Xianhui Bu,et al.  Microporous and Photoluminescent Chalcogenide Zeolite Analogs , 2002, Science.

[229]  L. Palatinus,et al.  Symmetry determination following structure solution in P1 , 2008 .

[230]  Yasuhiro Sakamoto,et al.  Modern microscopy methods for the structural study of porous materials. , 2004, Chemical communications.

[231]  Daniel Chateigner,et al.  Capturing Ultrasmall EMT Zeolite from Template-Free Systems , 2012, Science.

[232]  D. Xie,et al.  Using phases retrieved from two-dimensional projections to facilitate structure solution from X-ray powder diffraction data , 2011 .

[233]  A. Corma,et al.  Synthesis of a novel zeolite through a pressure-induced reconstructive phase transition process. , 2013, Angewandte Chemie.

[234]  C. Zicovich-Wilson,et al.  Adjusting framework ionicity to favour crystallisation of zeolites with strained structural units. Periodic quantum chemical studies , 2011 .

[235]  L. McCusker,et al.  Using a structure envelope to facilitate structure solution from powder diffraction data , 1997 .

[236]  Frank C. Hawthorne,et al.  Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. 3 D nets based on insertion of 2-connected vertices into 3-connected plane nets , 1986 .

[237]  Iosif I. Vaisman,et al.  Framework-Type Determination for Zeolite Structures in the Inorganic Crystal Structure Database , 2010 .

[238]  Jihong Yu,et al.  Criteria for zeolite frameworks realizable for target synthesis. , 2013, Angewandte Chemie.

[239]  D. Brouwer,et al.  Probing local structures of siliceous zeolite frameworks by solid-state NMR and first-principles calculations of 29Si-O-29Si scalar couplings. , 2009, Physical chemistry chemical physics : PCCP.

[240]  Kenneth D M Harris,et al.  How to determine structures when single crystals cannot be grown: opportunities for structure determination of molecular materials using powder diffraction data. , 2004, Chemical Society reviews.

[241]  Jihong Yu,et al.  Needs and trends in rational synthesis of zeolitic materials. , 2012, Chemical Society reviews.

[242]  C. Gilmore,et al.  Solving the crystal structures of zeolites using electron diffraction data. I. The use of potential-density histograms. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[243]  J. Smith,et al.  Enumeration of 4-connected 3-dimensional nets and classification of framework silicates, II, Perpendicular and near-perpendicular linkages from 4.8 2 ,3.12 2 and 4.6.12 nets , 1978 .

[244]  Geoffrey D. Price,et al.  Systematic enumeration of zeolite frameworks , 1989 .

[245]  German Sastre,et al.  Simulating the properties of small pore silica zeolites using interatomic potentials. , 2013, Chemical Society reviews.

[246]  Gregory J. Lewis,et al.  Tailoring zeolite morphology by Charge Density Mismatch for aromatics processing , 2013 .

[247]  Robert G. Bell,et al.  Isomorphism of anhydrous tetrahedral halides and silicon chalcogenides: energy landscape of crystalline BeF2, BeCl2, SiO2, and SiS2. , 2008, Journal of the American Chemical Society.

[248]  M. Zwijnenburg,et al.  A computational study into the (tetrahedral) distortion of TX2 α-quartz materials : The effect of changing the chemical composition away from SiO2 , 2006 .

[249]  M. Suchomel,et al.  High-Resolution Structural Characterization of Two Layered Aluminophosphates by Synchrotron Powder Diffraction and NMR Crystallographies , 2013 .

[250]  Jiří Čejka,et al.  Zeolites and catalysis : synthesis, reactions and applications , 2010 .

[251]  Jihong Yu,et al.  Distribution of trivalent metal cations in alumino-/gallogermanate zeolites with JST topology. , 2012, Dalton transactions.

[252]  D. Serrano,et al.  Heterogenous events in the crystallization of zeolites , 2001 .

[253]  C. Fyfe,et al.  Detection of the invisible aluminium and characterisation of the multiple , 2000 .

[254]  F. Taulelle NMR crystallography: crystallochemical formula and space group selection , 2004 .

[255]  D. Brouwer,et al.  A solid-state NMR method for solution of zeolite crystal structures. , 2005, Journal of the American Chemical Society.

[256]  J. Smith,et al.  Enumeration of 4-connected 3-dimensional nets and classification of framework silicates; I, Perpendicular linkage from simple hexagonal net , 1977 .

[257]  Krishna Rajan,et al.  Classification of oxide compounds through data-mining density of states spectra , 2011 .

[258]  P. Cox,et al.  The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism , 2005 .

[259]  A. Corma,et al.  A new microporous zeolitic silicoborate (ITQ-52) with interconnected small and medium pores. , 2014, Journal of the American Chemical Society.

[260]  Armel Le Bail,et al.  Inorganic structure prediction with GRINSP , 2005 .

[261]  Bein,et al.  Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids. , 1999, Angewandte Chemie.

[262]  Junliang Sun,et al.  Structure determination of zeolites and ordered mesoporous materials by electron crystallography. , 2010, Dalton transactions.

[263]  J. Melero,et al.  Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5 , 2000 .

[264]  S. Wells,et al.  Reverse Monte Carlo with geometric analysis – RMC+GA , 2004 .

[265]  Gregory J. Lewis,et al.  Synthesis and characterization of the 12-ring zeolites UZM-4 (BPH) and UZM-22 (MEI) via the charge density mismatch approach in the Choline-Li2O-SrO-Al2O3-SiO2 system , 2007 .

[266]  Jun Kong,et al.  A Novel Integrated Feature Selection Method for the Rational Synthesis of Microporous Aluminophosphate , 2012 .

[267]  Jun Xu,et al.  Natural abundance solid-state 67Zn NMR characterization of microporous zinc phosphites and zinc phosphates at ultrahigh magnetic field. , 2011, Physical chemistry chemical physics : PCCP.

[268]  L. Fleischer X Ray Structure Determination A Practical Guide , 2016 .

[269]  J. Richardson,et al.  Theoretical nets with 18-ring channels: enumeration, geometrical modeling, and neutron diffraction study of aluminophosphate 54 , 1989 .

[270]  L. McCusker,et al.  Charge flipping combined with histogram matching to solve complex crystal structures from powder diffraction data , 2007 .

[271]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[272]  Manuel Moliner,et al.  Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis , 2014 .

[273]  F. Schüth Nucleation and crystallization of solids from solution , 2001 .

[274]  W. M. Meier Zeolites and zeolite-like materials , 1986 .

[275]  Igor Rivin,et al.  Flexibility mechanisms in ideal zeolite frameworks , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[276]  R. Morris,et al.  Induction of chiral porous solids containing only achiral building blocks. , 2010, Nature chemistry.

[277]  A. Corma,et al.  Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings , 2010, Proceedings of the National Academy of Sciences.

[278]  U. Kolb,et al.  Towards automated diffraction tomography: part I--data acquisition. , 2007, Ultramicroscopy.

[279]  A. Corma,et al.  Crystal Structure of ITQ-26, a 3D Framework with Extra-Large Pores , 2008 .

[280]  Gérard Bricogne,et al.  MICE computer program. , 1997, Methods in enzymology.

[281]  S. Ashbrook,et al.  Application of NMR crystallography to the determination of the mechanism of charge-balancing in organocation-templated AlPO STA-2 , 2013 .

[282]  M. Weller,et al.  Beryllosilicate frameworks and zeolites. , 2010, Journal of the American Chemical Society.

[283]  R. Lobo,et al.  New description of the disorder in zeolite ZSM-48. , 2002, Journal of the American Chemical Society.

[284]  M. D. Foster,et al.  Hypothetical Uninodal Zeolite Structures: Comparison of AlPO4 and SiO2 Compositions Using Computer Simulation , 2004 .

[285]  J. Nagy,et al.  Generation, Characterization, and Transformations of Unsaturated Carbenium Ions in Zeolites. , 1999, Chemical reviews.

[286]  L. McCusker,et al.  Exploiting texture to estimate the relative intensities of overlapping reflections , 2004 .

[287]  Simon Parsons,et al.  The TOPAS symbolic computation system , 2011, Powder Diffraction.

[288]  V. Van Speybroeck,et al.  Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[289]  Hua Hou,et al.  Theoretical characterizations of the mechanism for the dimerization of monosilicic acid in basic solution. , 2013, Physical chemistry chemical physics : PCCP.

[290]  Maciej Haranczyk,et al.  Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials , 2012 .

[291]  Jihong Yu,et al.  A gallogermanate zeolite with eleven-membered-ring channels. , 2013, Angewandte Chemie.

[292]  U. Kolb,et al.  Structure solution of zeolites by automated electron diffraction tomography – Impact and treatment of preferential orientation , 2014 .

[293]  Julian D. Gale,et al.  Theoretical Calculations on Silica Frameworks and Their Correlation with Experiment , 1994 .

[294]  Jose Manuel Serra,et al.  Zeolite synthesis modelling with support vector machines: a combinatorial approach. , 2007, Combinatorial chemistry & high throughput screening.

[295]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[296]  D. Creaser,et al.  AN INVESTIGATION OF THE NUCLEATION/ CRYSTALLIZATION KINETICS OF NANOSIZED COLLOIDAL FAUJASITE ZEOLITES , 2002 .

[297]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[298]  Garland R. Marshall,et al.  PHOENIX: A Scoring Function for Affinity Prediction Derived Using High-Resolution Crystal Structures and Calorimetry Measurements , 2011, J. Chem. Inf. Model..

[299]  Stewart J. Warrender,et al.  Co-templating and modelling in the rational synthesis of zeolitic solids. , 2007, Chemical communications.

[300]  Michael O'Keeffe,et al.  Aspects of crystal structure prediction: some successes and some difficulties. , 2010, Physical chemistry chemical physics : PCCP.

[301]  D. Shantz,et al.  Silicalite-1 growth from clear solution: Effect of the structure-directing agent on growth kinetics. , 2005, The journal of physical chemistry. B.

[302]  Caroline Mellot-Draznieks,et al.  Role of computer simulations in structure prediction and structure determination: from molecular compounds to hybrid frameworks , 2007 .

[303]  D. Sholl,et al.  Efficient and Accurate Methods for Characterizing Effects of Framework Flexibility on Molecular Diffusion in Zeolites: CH4 Diffusion in Eight Member Ring Zeolites , 2013 .

[304]  A. Corma,et al.  Synthesis design and structure of a multipore zeolite with interconnected 12- and 10-MR channels. , 2012, Journal of the American Chemical Society.

[305]  Avelino Corma,et al.  Synthesis and structure determination of a new microporous zeolite with large cavities connected by small pores. , 2012, Journal of the American Chemical Society.

[306]  R. Martoňák,et al.  Crystal structure prediction and simulations of structural transformations: metadynamics and evolutionary algorithms , 2007 .

[307]  C. Serre,et al.  Crystallized frameworks with giant pores: are there limits to the possible? , 2005, Accounts of chemical research.

[308]  Feng-Shou Xiao,et al.  Green routes for synthesis of zeolites. , 2014, Chemical reviews.

[309]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[310]  Lynne B. McCusker,et al.  Powder Diffraction Data and Crystal Chemical Information Combined in an Automated Structure Determination Procedure for Zeolites , 1997 .

[311]  S. Auerbach,et al.  Modeling spontaneous formation of precursor nanoparticles in clear-solution zeolite synthesis. , 2005, Journal of the American Chemical Society.

[312]  E. Lloyd,et al.  Improvements to a Peak Assignment Algorithm for Two-Dimensional NMR Correlation Spectra of Zeolites Using Graph Theory , 2004 .

[313]  D. Dorset,et al.  Crystal structure of zeolite MCM-68: a new three-dimensional framework with large pores. , 2006, The journal of physical chemistry. B.

[314]  J. Senker,et al.  Determination of rotational symmetry elements in NMR crystallography , 2004 .

[315]  German Sastre,et al.  Feasibility of Pure Silica Zeolites , 2010 .

[316]  Estela Blaisten-Barojas,et al.  Machine Learning Study of the Heulandite Family of Zeolites , 2010 .

[317]  D. Brouwer NMR crystallography of zeolites: refinement of an NMR-solved crystal structure using ab initio calculations of 29Si chemical shift tensors. , 2008, Journal of the American Chemical Society.

[318]  M. Ogura,et al.  In situ small-angle and wide-angle X-ray scattering investigation on nucleation and crystal growth of nanosized zeolite A , 2007 .

[319]  F. Frigerio,et al.  ERS-18: A new member of the NON–EUO–NES zeolite family , 2011 .

[320]  F. Hawthorne,et al.  Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. Combination of zigzag and saw chains with 63, 3.122,4.82, 4.6.12 and (5.28)2(5.82), nets , 1988 .

[321]  Kenneth D. M. Harris,et al.  PowderSolve – a complete package for crystal structure solution from powder diffraction patterns , 1999 .

[322]  V. Heine,et al.  Rigid-Unit Modes and the Quantitative Determination of the Flexibility Possessed by Zeolite Frameworks , 1998 .

[323]  G. Busca,et al.  Solid-State NMR Characterization of the Insertion of Cobalt into Aluminosilicate Materials , 2011 .

[324]  R. M. Barrer,et al.  The crystal structure of the synthetic zeolite L , 1969 .

[325]  Raoul Kopelman,et al.  Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm , 1976 .

[326]  Manuel Moliner,et al.  The ITQ-37 mesoporous chiral zeolite , 2009, Nature.

[327]  X. Zou,et al.  Stacking disorders in zeolites and open-frameworks – structure elucidation and analysis by electron crystallography and X-ray diffraction , 2012 .

[328]  Solving the crystal structures of zeolites using electron diffraction data. II. Density-building functions. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[329]  M. Król,et al.  Application of IR spectra in the studies of zeolites from D4R and D6R structural groups , 2012 .

[330]  Can Li,et al.  UV Raman spectroscopic study on the synthesis mechanism and assembly of molecular sieves. , 2010, Chemical Society reviews.

[331]  J. Warzywoda,et al.  Synthesis of zeolite MCM-22 under rotating and static conditions , 1999 .

[332]  Christopher M. Martin,et al.  In situ observation of homogeneous nucleation of nanosized zeolite A. , 2006, Physical chemistry chemical physics : PCCP.

[333]  Elmar Schömer,et al.  Application of clustering techniques to electron-diffraction data: determination of unit-cell parameters. , 2012, Acta crystallographica. Section A, Foundations of crystallography.

[334]  Gunter M. Schütz,et al.  Strong Reactivity Enhancement through Molecular Traffic Control in Zeolites , 2013 .

[335]  van Ra Rutger Santen,et al.  In situ Observation of Nucleation and Crystal Growth in Zeolite Synthesis. A Small-Angle X-ray Scattering Investigation on Si-TPA-MFI , 1999 .

[336]  Stefan K. Henninger,et al.  The Performance of Small‐Pore Microporous Aluminophosphates in Low‐Temperature Solar Energy Storage: The Structure–Property Relationship , 2012 .

[337]  Floppy modes in crystalline and amorphous silicates , 1997 .

[338]  D. Do,et al.  A new method to determine pore size and its volume distribution of porous solids having known atomistic configuration. , 2008, Journal of colloid and interface science.

[339]  Igor Rivin,et al.  A geometric solution to the largest-free-sphere problem in zeolite frameworks , 2006 .

[340]  Pierre Collet,et al.  Boosting theoretical zeolitic framework generation for the determination of new materials structures using GPU programming. , 2011, Physical chemistry chemical physics : PCCP.

[341]  Xiaolong Liu,et al.  New insights into the degermanation process of ITQ-17 zeolites , 2014 .

[342]  Svetlana Mintova,et al.  Advances in nanosized zeolites. , 2013, Nanoscale.

[343]  S. Krivovichev Structural and topological complexity of zeolites: An information-theoretic analysis , 2013 .

[344]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: semiregular nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[345]  Julian D. Gale,et al.  Part 1: Using a genetic algorithm and an indirect approach to exclusion zones , 2004 .

[346]  B. Han,et al.  From molecular fragments to crystals: a UV Raman spectroscopic study on the mechanism of Fe-ZSM-5 synthesis. , 2009, Chemistry.

[347]  L. Burel,et al.  Quasi all-silica zeolite obtained by isomorphous degermanation of an as-made germanium-containing precursor. , 2014, Angewandte Chemie.

[348]  D. Vlachos,et al.  Formation and structure of self-assembled silica nanoparticles in basic solutions of organic and inorganic cations. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[349]  Jacek Klinowski,et al.  Systematic enumeration of crystalline networks , 1999, Nature.

[350]  A. Corma,et al.  Topological Descriptor for Oxygens in Zeolites. Analysis of Ring Counting in Tetracoordinated Nets , 2009 .

[351]  Julian D. Gale,et al.  GULP: Capabilities and prospects , 2005 .

[352]  P. Cox,et al.  The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. , 2003, Chemical reviews.

[353]  Jixue Li,et al.  Design of zeolite frameworks with cross-linked channels through constrained assembly of atoms , 2004 .

[354]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[355]  A. Corma,et al.  Predicting Structural Feasibility of Silica and Germania Zeolites , 2010 .

[356]  Stefan T. Bromley,et al.  Toward understanding extra-large-pore zeolite energetics and topology: A polyhedral approach , 2004 .

[357]  A. Bhan,et al.  A link between reactivity and local structure in acid catalysis on zeolites. , 2008, Accounts of Chemical Research.

[358]  P. Rez,et al.  Ab Initio Calculations of the Energy Dependence of Si–O–Si Angles in Silica and Ge–O–Ge Angles in Germania Crystalline Systems , 2014 .

[359]  Maciej Haranczyk,et al.  Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials , 2012, J. Chem. Inf. Model..

[360]  S. Hovmöller,et al.  Structure determination of the zeolite IM-5 using electron crystallography , 2010 .

[361]  B. Smit,et al.  Entropy effects during sorption of alkanes in zeolites. , 2002, Chemical Society reviews.

[362]  D. Zhao,et al.  Hydrothermal Synthesis and Structural Characterization of Zeolite-Like Structures Based on Gallium and Aluminum Germanates. , 1998 .

[363]  J. Coronas Present and future synthesis challenges for zeolites , 2010 .

[364]  Jihong Yu,et al.  Design of Chiral Zeolite Frameworks with Specified Channels through Constrained Assembly of Atoms , 2005 .

[365]  Klaus-Peter Schröder,et al.  Bridging hydrodyl groups in zeolitic catalysts: a computer simulation of their structure, vibrational properties and acidity in protonated faujasites (HY zeolites) , 1992 .

[366]  Hongbo Shi,et al.  Ab initio and classical simulations of the temperature dependence of zeolite pore sizes , 2014 .

[367]  Prabir K. Dutta,et al.  Handbook of Zeolite Science and Technology , 2003 .

[368]  Joseph V. Smith Enumeration of 4-connected 3-dimensional nets and classification of framework silicates; III, Combination of helix, and zigzag, crankshaft and saw chains with simple 2D nets , 1979 .

[369]  Jacek Klinowski,et al.  Structural evaluation of systematically enumerated hypothetical uninodal zeolites. , 2003, Angewandte Chemie.

[370]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[371]  Junliang Sun,et al.  A zeolite family with chiral and achiral structures built from the same building layer. , 2008, Nature materials.

[372]  C. Catlow,et al.  Ionicity and Framework Stability of Crystalline Aluminophosphates , 2001 .

[373]  Armel Le Bail,et al.  Databases of virtual inorganic crystal structures and their applications , 2010 .

[374]  D. O′Hare,et al.  An in Situ Energy-Dispersive X-ray Diffraction Study of the Hydrothermal Crystallization of Zeolite A. 2. Effect of Deuteration on Crystallization Kinetics , 2001 .

[375]  A. Corma,et al.  Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. , 2012, Nature chemistry.

[376]  D. Dorset Electron crystallography of zeolites. 1. Projected crystal structures of ZSM-5 and ZSM-11 , 2003 .

[377]  Mark E. Davis,et al.  Entropy of Pure-Silica Molecular Sieves , 2001 .

[378]  M. Camblor,et al.  A pure silica chiral polymorph with helical pores. , 2012, Angewandte Chemie.

[379]  G. Kramer,et al.  Reactivity Theory of Zeolitic Broensted Acidic Sites , 1995 .

[380]  A. Corma,et al.  A zeolitic structure (ITQ-34) with connected 9- and 10-ring channels obtained with phosphonium cations as structure directing agents. , 2008, Journal of the American Chemical Society.

[381]  S. Mintova,et al.  Mechanism of the transformation of silica precursor solutions into Si-MFI zeolite. , 2002, Angewandte Chemie.

[382]  Peng Wu,et al.  Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species. , 2008, Journal of the American Chemical Society.

[383]  Jihong Yu,et al.  Chiral zeolitic materials: structural insights and synthetic challenges , 2008 .

[384]  R. Fricke,et al.  Incorporation of gallium into zeolites: syntheses, properties and catalytic application. , 2000, Chemical reviews.

[385]  K. Shankland,et al.  Uniting electron crystallography and powder diffraction , 2012 .

[386]  X. Zou,et al.  Intergrown New Zeolite Beta Polymorphs with Interconnected 12- Ring Channels Solved by Combining Electron Crystallography and Single-Crystal X‑ray Diffraction , 2012 .

[387]  J. M. Serra,et al.  Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications. , 2006, Journal of combinatorial chemistry.

[388]  Robert Raja,et al.  Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. , 2008, Accounts of chemical research.

[389]  Kramer,et al.  Force fields for silicas and aluminophosphates based on ab initio calculations. , 1990, Physical review letters.

[390]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[391]  J. Gale,et al.  Computational studies of aluminum phosphate polymorphs , 1996 .

[392]  Colin R. Groom,et al.  One in half a million: a solid form informatics study of a pharmaceutical crystal structure , 2012 .

[393]  Krishna Rajan,et al.  Secondary descriptor development for zeolite framework design: an informatics approach , 2003 .

[394]  Avelino Corma,et al.  The synthesis of an extra-large-pore zeolite with double three-ring building units and a low framework density. , 2010, Angewandte Chemie.

[395]  D. Dawson,et al.  Recent developments in solid-state NMR spectroscopy of crystalline microporous materials. , 2014, Physical chemistry chemical physics : PCCP.

[396]  M. Weller,et al.  Lightweight nanoporous metal hydroxide-rich zeotypes , 2012, Nature Communications.

[397]  丹羽 幹,et al.  Characterization and design of zeolite catalysts : solid acidity, shape selectivity and loading properties , 2010 .

[398]  Gérard Férey,et al.  Novel inorganic frameworks constructed from double-four-ring (D4R) units: computational design, structures, and lattice energies of silicate, aluminophosphate, and gallophosphate candidates. , 2002, Journal of the American Chemical Society.

[399]  Charge flipping at work: a case of pseudosymmetry. , 2006, Journal of the American Chemical Society.

[400]  G. B. Suffritti,et al.  Structure and Dynamics of Zeolites Investigated by Molecular Dynamics. , 1997, Chemical reviews.

[401]  Ji Man Kim,et al.  Synthesis of zeolite beta in fluoride media under microwave irradiation , 2004 .

[402]  D. Xie,et al.  Combining precession electron diffraction data with X-ray powder diffraction data to facilitate structure solution , 2008 .

[403]  V. Valtchev,et al.  Mechanism of zeolite A nanocrystal growth from colloids at room temperature. , 1999, Science.

[404]  D. Xie,et al.  Structure of the borosilicate zeolite catalyst SSZ-82 solved using 2D-XPD charge flipping. , 2011, Journal of the American Chemical Society.

[405]  David Donofrio,et al.  Accelerating analysis of void space in porous materials on multicore and GPU platforms , 2012, Int. J. High Perform. Comput. Appl..

[406]  C. Jallut,et al.  Quantification of the confinement effect in microporous materials. , 2013, Physical chemistry chemical physics : PCCP.

[407]  A. Corma,et al.  Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43 , 2011, Science.

[408]  D. Dorset,et al.  Crystal structure of MCM-70: A microporous material with high framework density. , 2005, The journal of physical chemistry. B.

[409]  Henk van Koningsveld,et al.  Compendium of Zeolite Framework Types: Building Schemes and Type Characteristics , 2007 .

[410]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[411]  Joseph V. Smith,et al.  Enumeration of 4-connected 3-dimensional nets and classification of framework silicates; the infinite set of ABC-6 nets; the Archimedean and sigma -related nets , 1981 .

[412]  V. Gramlich,et al.  Improved treatment of severely or exactly overlapping Bragg reflections for the application of direct methods to powder data , 1993 .

[413]  G. Stucky,et al.  NOVEL GERMANATE ZEOLITE STRUCTURES WITH 3-RINGS , 1998 .

[414]  Christodoulos A Floudas,et al.  Computational characterization of zeolite porous networks: an automated approach. , 2011, Physical chemistry chemical physics : PCCP.

[415]  C. Mellot‐Draznieks,et al.  Structures and energetics of open-framework germanates; Exploration of hypothetical zeolitic GeO2 structures based on D4R units , 2006 .

[416]  X. Xue,et al.  Structural characterization of moganite-type AlPO4 by NMR and powder X-ray diffraction. , 2012, Inorganic chemistry.

[417]  Jihong Yu,et al.  Divalent-metal-stabilized aluminophosphates exhibiting a new zeolite framework topology. , 2012, Inorganic Chemistry.

[418]  J. Klinowski Hypothetical molecular sieve frameworks , 1998 .

[419]  R. Krishna,et al.  A molecular dynamics investigation of the diffusion characteristics of cavity-type zeolites with 8-ring windows , 2011 .

[420]  Mark E. Davis,et al.  Imaging the Assembly Process of the Organic‐Mediated Synthesis of a Zeolite , 1999 .

[421]  A. Corma,et al.  Towards the rational design of efficient organic structure-directing agents for zeolite synthesis. , 2013, Angewandte Chemie.

[422]  F. D. De Schryver,et al.  Characterization of nanosized material extracted from clear suspensions for MFI zeolite synthesis , 1999 .

[423]  C. Catlow,et al.  Modeling the Nucleation of Zeolite A , 2013 .

[424]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[425]  G. Férey,et al.  Nanoporous Solids: How Do They Form? An In Situ Approach , 2014 .

[426]  F. Renzo,et al.  Reversible channel deformation of zeolite omega during template degradation highlighted by in situ time-resolved synchrotron powder diffraction , 2007 .

[427]  G. Cruciani Zeolites upon heating: Factors governing their thermal stability and structural changes , 2006 .

[428]  Joseph V. Smith,et al.  Topochemistry of zeolites and related materials. 1. Topology and geometry , 1988 .

[429]  L. McCusker,et al.  Ab initio structure determination from severely overlapping powder diffraction data , 1992 .

[430]  J. Smith,et al.  Nets with channels of unlimited diameter , 1984, Nature.

[431]  F. Schüth,et al.  Detection of structural elements of different zeolites in nucleating solutions by electrospray ionization mass spectrometry. , 2008, Angewandte Chemie.

[432]  M. Zwijnenburg,et al.  Absence of Limitations on the Framework Density and Pore Size of High-Silica Zeolites , 2008 .

[433]  Aron Walsh,et al.  On the problem of cluster structure diversity and the value of data mining. , 2010, Physical chemistry chemical physics : PCCP.

[434]  D. Bougeard,et al.  Molecular-dynamical calculation of vibrational spectra application to zeolites , 1995 .

[435]  Kenneth D. M. Harris,et al.  New opportunities for structure determination of molecular materials directly from powder diffraction data , 2003 .

[436]  Jihong Yu,et al.  Rational approaches toward the design and synthesis of zeolitic inorganic open-framework materials. , 2010, Accounts of chemical research.

[437]  Gregory J. Lewis,et al.  New ABC-6 net molecular sieves ZnAPO-57 and ZnAPO-59: Framework charge density-induced transition from two- to three-dimensional porosity , 2014 .

[438]  Mark E. Davis,et al.  Si-MFI Crystallization Using a "Dimer" and "Trimer" of TPA Studied with Small-Angle X-ray Scattering , 2000 .

[439]  Xiaolong Liu,et al.  Evidence for F-/SiO- anion exchange in the framework of As-synthesized all-silica zeolites. , 2011, Angewandte Chemie.

[440]  V. Valtchev,et al.  Structure analysis of zeolites by rotation electron diffraction (RED) , 2014 .

[441]  Michael O'Keeffe,et al.  Crystal nets as graphs: Terminology and definitions , 2005 .

[442]  Manuel Moliner,et al.  High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings , 2006, Nature.

[443]  Stephen A. Wells,et al.  A simple geometric structure optimizer for accelerated detection of infeasible zeolite graphs , 2006 .

[444]  Estefania Argente,et al.  Application of artificial neural networks to high-throughput synthesis of zeolites , 2005 .

[445]  Joseph V. Smith,et al.  Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. 3D nets based on the 4.6.12 and (4.6.10)4 (6.6.10): 2D nets , 1985 .

[446]  H. V. Bekkum,et al.  A consistent molecular mechanics force field for aluminophosphates , 1992 .

[447]  Mark E. Davis Zeolites from a Materials Chemistry Perspective , 2014 .

[448]  Yi Li,et al.  Design of Zeolite Frameworks with Defined Pore Geometry through Constrained Assembly of Atoms , 2003 .

[449]  Michael Treacy,et al.  Enumeration of periodic tetrahedral frameworks , 1997 .

[450]  X. Bao,et al.  New insights into the role of amines in the synthesis of molecular sieves in ionic liquids. , 2009, Chemistry.

[451]  Jun Kong,et al.  Missing value estimation for database of aluminophosphate (AlPO) syntheses , 2013 .

[452]  Avelino Corma,et al.  Propane/Propylene Diffusion in Zeolites: Framework Dynamics , 2009 .

[453]  Christian Baerlocher,et al.  Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. , 2008, Nature materials.

[454]  H. Bosmans,et al.  The systematic enumeration of (4;2)-connected 3D nets related to the tridymite group , 1990 .

[455]  Mark E. Davis,et al.  Electron Diffraction Structure Solution of a Nanocrystalline Zeolite at Atomic Resolution , 1999 .

[456]  G. Oszlányi,et al.  Ab initio structure solution by charge flipping. II. Use of weak reflections. , 2005, Acta crystallographica. Section A, Foundations of crystallography.

[457]  Scott M Woodley,et al.  Engineering microporous architectures: combining evolutionary algorithms with predefined exclusion zones. , 2007, Physical chemistry chemical physics : PCCP.

[458]  Iosif I. Vaisman,et al.  Identifying Zeolite Frameworks with a Machine Learning Approach , 2009 .

[459]  K. Okazaki,et al.  Molecular dynamics studies on thermal behavior of an MFI-type zeolite , 1995 .

[460]  Christodoulos A Floudas,et al.  Predictive framework for shape-selective separations in three-dimensional zeolites and metal-organic frameworks. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[461]  C. R. A. Catlow,et al.  Interatomic potentials for SiO2 , 1984 .

[462]  W. Steurer,et al.  Ab initio structure solution by iterative phase-retrieval methods: performance tests on charge flipping and low-density elimination , 2010 .

[463]  M. D. Foster,et al.  Chemical evaluation of hypothetical uninodal zeolites. , 2004, Journal of the American Chemical Society.

[464]  J. Gale,et al.  The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation , 1999 .

[465]  O. Terasaki,et al.  Structural elucidation of microporous and mesoporous catalysts and molecular sieves by high-resolution electron microscopy. , 2001, Accounts of chemical research.

[466]  David J. Earl,et al.  Synthesis and Monte Carlo Structure Determination of SSZ-77: A New Zeolite Topology , 2008 .

[467]  Joseph V. Smith Enumeration of 4-connected 3-dimensional nets and classification of framework silicates : Combination of 4 - 1 chain and 2D nets , 1983 .

[468]  V. Heine,et al.  Rigid unit modes and dynamic disorder: SiO2 cristobalite and quartz , 1999 .

[469]  M. D. Foster,et al.  Modeling the framework stability and catalytic activity of pure and transition metal-doped zeotypes , 2003 .

[470]  S. Hovmöller,et al.  Electron crystallography: imaging and single-crystal diffraction from powders. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[471]  Michael W. Deem,et al.  Framework crystal structure solution by simulated annealing : test application to known zeolite structures , 1992 .

[472]  C. Mellot‐Draznieks,et al.  Real, virtual and not yet discovered porous structures using scale chemistry and/or simulation. A tribute to Sten Andersson , 2003 .

[473]  A. Sleight,et al.  Flexibility of Network Structures , 1996 .

[474]  Martijn A Zwijnenburg,et al.  On the performance of DFT and interatomic potentials in predicting the energetics of (three-membered ring-containing) siliceous materials. , 2007, The journal of physical chemistry. B.

[475]  Igor Rivin,et al.  Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs , 2004 .

[476]  M. Deem,et al.  A biased Monte Carlo scheme for zeolite structure solution , 1998, cond-mat/9809085.

[477]  Jie Su,et al.  PKU-9: an aluminogermanate with a new three-dimensional zeolite framework constructed from CGS layers and spiro-5 units. , 2009, Journal of the American Chemical Society.

[478]  C. Catlow,et al.  Stability and Structures of Aluminosilicate Clusters , 2011 .

[479]  Yousef Saad,et al.  Data mining for materials: Computational experiments with AB compounds , 2012 .

[480]  U. Kolb,et al.  Applications of automated diffraction tomography (ADT) on nanocrystalline porous materials , 2013 .

[481]  Srinivas C. Turaga,et al.  Calculating free energies for diffusion in tight-fitting zeolite-guest systems: Local normal-mode Monte Carlo , 2003 .

[482]  W. M. Meier,et al.  Constituent units and framework conformations in zeolite networks , 1982 .

[483]  Berend Smit,et al.  Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. , 2008, Chemical reviews.

[484]  Ian G. Wood,et al.  A SIMPLE, SYSTEMATIC METHOD FOR THE GENERATION PERIODIC, 2-DIMENSIONAL, 3-CONNECTED NETS FOR THE DESCRIPTION OF ZEOLITE FRAMEWORKS , 1992 .

[485]  Ana E. Platero‐Prats,et al.  Towards Inorganic Porous Materials by Design: Looking for New Architectures , 2011, Advanced materials.

[486]  Jiří Čejka,et al.  Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems , 2012 .

[487]  A. Corma,et al.  Synthesis and structure of polymorph B of zeolite Beta , 2008 .