HIGHER-ORDER ACCURATE, POSITIVE SEMIDEFINITE ESTIMATION OF LARGE-SAMPLE COVARIANCE AND SPECTRAL DENSITY MATRICES

A new class of large-sample covariance and spectral density matrix estimators is proposed based on the notion of flat-top kernels. The new estimators are shown to be higher-order accurate when higher-order accuracy is possible. A discussion on kernel choice is presented as well as a supporting finite-sample simulation. The problem of spectral estimation under a potential lack of finite fourth moments is also addressed. The higher-order accuracy of flat-top kernel estimators typically comes at the sacrifice of the positive semidefinite property. Nevertheless, we show how a flat-top estimator can be modified to become positive semidefinite (even strictly positive definite) while maintaining its higher-order accuracy. In addition, an easy (and consistent) procedure for optimal bandwidth choice is given; this procedure estimates the optimal bandwidth associated with each individual element of the target matrix, automatically sensing (and adapting to) the underlying correlation structure.

[1]  P. Brockwell,et al.  Time Series: Theory and Methods , 2013 .

[2]  R. T. Varneskov Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise , 2011 .

[3]  Yixiao Sun,et al.  Heteroskedasticity and Spatiotemporal Dependence Robust Inference for Linear Panel Models with Fixed Effects , 2011 .

[4]  D. Politis,et al.  Higher-order accurate polyspectral estimation with flat-top lag-windows , 2009 .

[5]  I. Gijbels,et al.  Bandwidth Selection in Nonparametric Kernel Testing , 2008 .

[6]  P. Phillips,et al.  Optimal Bandwidth Choice for Interval Estimation in GMM Regression , 2008 .

[7]  T. Vogelsang,et al.  Fixed‐b asymptotic approximation of the sampling behaviour of nonparametric spectral density estimators , 2007 .

[8]  X. Shao,et al.  Asymptotic spectral theory for nonlinear time series , 2006, math/0611029.

[9]  P. Phillips,et al.  Spectral Density Estimation and Robust Hypothesis Testing Using Steep Origin Kernels Without Truncation , 2006 .

[10]  T. Vogelsang,et al.  Fixed-B Asymptotic Approximation of the Sampling Behavior of Nonparametric Spectral Density Estimators , 2006 .

[11]  P. Phillips,et al.  Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing , 2005 .

[12]  Nicholas M. Kiefer,et al.  A NEW ASYMPTOTIC THEORY FOR HETEROSKEDASTICITY-AUTOCORRELATION ROBUST TESTS , 2005, Econometric Theory.

[13]  Vincent J. Carey Resampling Methods for Dependent Data , 2005 .

[14]  H. White,et al.  Automatic Block-Length Selection for the Dependent Bootstrap , 2004 .

[15]  D. Politis,et al.  Nonparametric regression with infinite order flat-top kernels , 2004 .

[16]  D. Politis Adaptive bandwidth choice , 2003 .

[17]  Atsushi Inoue,et al.  Bootstrapping GMM estimators for time series , 2003 .

[18]  Nicholas M. Kiefer,et al.  HETEROSKEDASTICITY-AUTOCORRELATION ROBUST STANDARD ERRORS USING THE BARTLETT KERNEL WITHOUT TRUNCATION , 2002 .

[19]  D. Andrews EQUIVALENCE OF THE HIGHER ORDER ASYMPTOTIC EFFICIENCY OF k-STEP AND EXTREMUM STATISTICS , 2002, Econometric Theory.

[20]  D. Politis On Nonparametric Function Estimation with Infinite-Order Flat-Top Kernels , 2000 .

[21]  C. Velasco,et al.  EDGEWORTH EXPANSIONS FOR SPECTRAL DENSITY ESTIMATES AND STUDENTIZED SAMPLE MEAN , 2000, Econometric Theory.

[22]  Peter C. Young,et al.  Nonlinear and Nonstationary Signal Processing , 1998, Technometrics.

[23]  Serena Ng,et al.  The Exact Error In Estimating The Spectral Density At The Origin , 1996 .

[24]  Joseph P. Romano,et al.  Inference for Autocorrelations under Weak Assumptions , 1996 .

[25]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[26]  K. West Another Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator , 1995 .

[27]  W. Newey,et al.  Automatic Lag Selection in Covariance Matrix Estimation , 1994 .

[28]  Bruce E. Hansen,et al.  Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes , 1992 .

[29]  Donald W. K. Andrews,et al.  An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator , 1992 .

[30]  ByoungSeon Choi,et al.  Arma Model Identification , 1992 .

[31]  V. Solo The Statistical Theory of Linear Systems E. J. Hannan and Manfred Deistler John Wiley & Sons, 1988 , 1992, Econometric Theory.

[32]  P. Robinson,et al.  AUTOMATIC FREQUENCY DOMAIN INFERENCE ON SEMIPARAMETRIC AND NONPARAMETRIC MODELS , 1991 .

[33]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[34]  David E. Tyler,et al.  ON WIELANDT'S INEQUALITY AND ITS APPLICATION TO THE ASYMPTOTIC DISTRIBUTION OF THE EIGENVALUES OF A RANDOM SYMMETRIC MATRIX , 1991 .

[35]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[36]  H. White,et al.  A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models , 1988 .

[37]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[38]  J. Hüsler Extremes and related properties of random sequences and processes , 1984 .

[39]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[40]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[41]  M. Rosenblatt,et al.  ASYMPTOTIC THEORY OF ESTIMATES OF kTH-ORDER SPECTRA. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Priestley Basic Considerations in the Estimation of Spectra , 1962 .

[43]  E. Parzen Mathematical Considerations in the Estimation of Spectra , 1961 .

[44]  E. Hannan The Estimation of the Spectral Density after Trend Removal , 1958 .

[45]  E. J. Hannan,et al.  The Variance of the Mean of a Stationary Process , 1957 .

[46]  E. Parzen On Consistent Estimates of the Spectrum of a Stationary Time Series , 1957 .

[47]  G. H. Jowett THE COMPARISON OF MEANS OF SETS OF OBSERVATIONS FROM SECTIONS OF INDEPENDENT STOCHASTIC SERIES , 1955 .

[48]  D. Politis,et al.  Asymptotic Normality, Strong Mixing and Spectral Density Estimates , 2011 .

[49]  D. Politis,et al.  Higher-Order Polyspectral Estimation with Flat-Top Lag-Windows , 2007 .

[50]  Dimitris N. Politis,et al.  A heavy-tailed distribution for ARCH residuals with application to volatility prediction , 2004 .

[51]  Qiwei Yao,et al.  Inference in ARCH and GARCH models with heavy-tailed errors , 2003 .

[52]  T. Mikosch,et al.  The sample autocorrelations of financial time series models , 2000 .

[53]  T. Mikosch,et al.  The sample autocorrections of financial time series models , 1999 .

[54]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[55]  P. Robinson,et al.  11 Autocorrelation-robust inference , 1997 .

[56]  Joseph P. Romano,et al.  BIAS‐CORRECTED NONPARAMETRIC SPECTRAL ESTIMATION , 1995 .

[57]  O. Lepskii,et al.  Asymptotically minimax adaptive estimation. II: Schemes without optimal adaptation: adaptive estimators , 1993 .

[58]  O. Lepskii Asymptotically Minimax Adaptive Estimation. I: Upper Bounds. Optimally Adaptive Estimates , 1992 .

[59]  O. Lepskii On a Problem of Adaptive Estimation in Gaussian White Noise , 1991 .

[60]  E. Hannan,et al.  The Statistical Theory of Linear Systems. , 1990 .

[61]  M. Rosenblatt Stationary sequences and random fields , 1985 .

[62]  David R. Brillinger,et al.  Time Series: Data Analysis and Theory. , 1982 .

[63]  E. J. Hannan,et al.  Multiple time series , 1970 .

[64]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[65]  B. Harris Spectral Analysis Of Time Series , 1967 .