Applications of pair distribution function methods to contemporary problems in materials chemistry

Over the past five years, the use of pair distribution function (PDF) methods to study local structure has become increasingly prominent in the mainstream materials chemistry literature. Because the technique is sensitive not only to the average (long-range) material structure but also to any local distortions away from the average structure, PDF measurements provide a valuable means of studying local structure in a way that is inherently consistent with traditional crystallographic refinement. In this article, we review the ways in which PDF methods are being used to determine local structure–property relationships in a range of materials of particular currency within the materials chemistry community.

[1]  R. J. Speedy Models for the amorphization of compressed crystals , 1996 .

[2]  G. Kowach,et al.  Frustrated soft modes and negative thermal expansion in ZrW2O8. , 2002, Physical review letters.

[3]  A. Soper Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement , 2005 .

[4]  K. Shankland,et al.  Characterisation of amorphous and nanocrystalline molecular materials by total scattering , 2010 .

[5]  Michel J. P. Gingras,et al.  Spin Ice State in Frustrated Magnetic Pyrochlore Materials , 2001, Science.

[6]  John S. O. Evans,et al.  Negative Thermal Expansion in ZrW2O8 and HfW2O8 , 1996 .

[7]  A. Cheetham,et al.  The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. , 2009, Angewandte Chemie.

[8]  T. Préat,et al.  Response to Comment on "Tequila, a Neurotrypsin Ortholog, Regulates Long-Term Memory Formation in Drosophila" , 2007, Science.

[9]  J. Haines,et al.  Topologically ordered amorphous silica obtained from the collapsed siliceous zeolite, silicalite-1-F: a step toward "perfect" glasses. , 2009, Journal of the American Chemical Society.

[10]  V. Heine,et al.  Simulation studies of at high pressure , 1998 .

[11]  John S. O. Evans,et al.  Argentophilicity-dependent colossal thermal expansion in extended prussian blue analogues. , 2008, Journal of the American Chemical Society.

[12]  D. E. Partin,et al.  The Disordered Crystal Structures of Zn(CN)2and Ga(CN)3 , 1997 .

[13]  B. Abrahams,et al.  A honeycomb form of cadmium cyanide. A new type of 3D arrangement of interconnected rods generating infinite linear channels of large hexagonal cross-section , 1990 .

[14]  D. Keen,et al.  Ferroelectric nanoscale domains and the 905 K phase transition in SrSnO3 : A neutron total-scattering study , 2007 .

[15]  V. Heine,et al.  Rigid unit modes and the negative thermal expansion in ZrW2O8 , 1997 .

[16]  C. Fennie,et al.  Atomic displacements in the charge ice pyrochlore Bi 2 Ti 2 O 6 O ' studied by neutron total scattering , 2010, 1001.1368.

[17]  T. Proffen,et al.  Measuring Correlated Atomic Motion Using X-ray Diffraction , 1999 .

[18]  K. Ohara,et al.  Structural disorder in lithium lanthanum titanate: the basis of superionic conduction , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  G. Lucovsky,et al.  Bond constraint theory studies of chalcogenide phase change memories , 2008 .

[20]  G. Ehlers,et al.  High-resolution neutron scattering study of Tb 2 Mo 2 O 7 : A geometrically frustrated spin glass , 2010 .

[21]  V. Petkov Nanostructure by high- energy X-ray diffraction , 2008 .

[22]  R. Hoppe,et al.  Die Kristallstruktur von KCuO2, RbCuO2 und CsCuO2 , 1969 .

[23]  Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. , 2004, Physical review letters.

[24]  S. Weiner,et al.  Choosing the Crystallization Path Less Traveled , 2005, Science.

[25]  R. Mcgreevy,et al.  Modelling of lattice and magnetic thermal disorder in manganese oxide , 1998 .

[26]  Thomas Proffen,et al.  Probing Local Dipoles and Ligand Structure in BaTiO3 Nanoparticles , 2010 .

[27]  E. Kaxiras,et al.  Semiconducting cyanide-transition-metal nanotubes. , 2007, Small.

[28]  Elbio Dagotto,et al.  Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[29]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[30]  U. V. Waghmare,et al.  First-principles-based simulations of relaxor ferroelectrics , 2006 .

[31]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[32]  B. Phillips,et al.  Nanoporous Structure and Medium-Range Order in Synthetic Amorphous Calcium Carbonate , 2010 .

[33]  M. Lanagan,et al.  Structural study of an unusual cubic pyrochlore Bi1.5Zn0.92Nb1.5O6.92 , 2002 .

[34]  A. Cheetham,et al.  Local structural origins of the distinct electronic properties of Nb-substituted SrTiO3 and BaTiO3. , 2008, Physical review letters.

[35]  H. Hamann,et al.  Ultra-high-density phase-change storage and memory , 2006, Nature materials.

[36]  G. Shirane A NOTE ON THE MAGNETIC INTENSITIES OF POWDER NEUTRON DIFFRACTION , 1959 .

[37]  M. Terrones,et al.  Direct observation of the structure of gold nanoparticles by total scattering powder neutron diffraction , 2004 .

[38]  Simon J L Billinge,et al.  Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. , 2004, Chemical communications.

[39]  K. Chapman,et al.  Selective recovery of dynamic guest structure in a nanoporous prussian blue through in situ X-ray diffraction: a differential pair distribution function analysis. , 2005, Journal of the American Chemical Society.

[40]  Cheetham,et al.  Open-Framework Inorganic Materials. , 1999, Angewandte Chemie.

[41]  S. Kohara,et al.  A new approach to the determination of atomic-architecture of amorphous zeolite precursors by high-energy X-ray diffraction technique. , 2006, Physical chemistry chemical physics : PCCP.

[42]  J. Tominaga,et al.  Why DVDs work the way they do: The nanometer-scale mechanism of phase change in Ge–Sb–Te alloys , 2006 .

[43]  Amit Kumar,et al.  Microscopic understanding of negative magnetization in Cu, Mn, and Fe based Prussian blue analogues. , 2008, Physical review letters.

[44]  Understanding the insulating phase in colossal magnetoresistance manganites: shortening of the Jahn-Teller long-bond across the phase diagram of La1-xCaxMnO3. , 2006, Physical review letters.

[45]  N. Allan,et al.  Negative thermal expansion , 2005 .

[46]  D. Keen A comparison of various commonly used correlation functions for describing total scattering , 2001 .

[47]  Jung‐Kun Lee,et al.  Local structure and medium-range ordering in relaxor ferroelectric Pb(Zn1∕3Nb2∕3)O3 studied using neutron pair distribution function analysis , 2006 .

[48]  A. Barnes,et al.  Neutron and x-ray diffraction studies of liquids and glasses , 2005 .

[49]  Perottoni,et al.  Pressure-induced amorphization and negative thermal expansion in ZrW2O8 , 1998, Science.

[50]  A. Soper,et al.  Structure and properties of an amorphous metal-organic framework. , 2010, Physical review letters.

[51]  Andrew L. Goodwin,et al.  Rigid unit modes and intrinsic flexibility in linearly bridged framework structures , 2006 .

[52]  K. Chapman,et al.  Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2: an atomic pair distribution function analysis. , 2005, Journal of the American Chemical Society.

[53]  Noboru Yamada,et al.  Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states , 2006 .

[54]  R. Mcgreevy,et al.  Structural disorder in AgBr on the approach to melting , 1990 .

[55]  A. Simon,et al.  Local structure in BaTi 1− x Zr x O 3 relaxors from neutron pair distribution function analysis , 2009 .

[56]  Matthew J Cliffe,et al.  Structure determination of disordered materials from diffraction data. , 2009, Physical review letters.

[57]  M. Kanatzidis,et al.  An interpenetrated framework material with hysteretic CO(2) uptake. , 2010, Chemistry.

[58]  A. Goodwin,et al.  Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials , 2005 .

[59]  R. Pearson Concerning jahn-teller effects. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Cingolani,et al.  Size, shape, and internal atomic ordering of nanocrystals by atomic pair distribution functions: a comparative study of gamma-Fe2O3 nanosized spheres and tetrapods. , 2009, Journal of the American Chemical Society.

[61]  R. Siddharthan,et al.  Zero-point entropy in ‘spin ice’ , 1999, Nature.

[62]  A. Fletcher,et al.  Flexibility in metal-organic framework materials: impact on sorption properties , 2005 .

[63]  Y. Hu,et al.  Hydrogen Storage in Metal–Organic Frameworks , 2010, Advanced materials.

[64]  A. Sleight,et al.  Structural investigation of the negative-thermal-expansion material ZrW2O8. , 1999, Acta crystallographica. Section B, Structural science.

[65]  D. Keen,et al.  Model-independent extraction of dynamical information from powder diffraction data , 2005 .

[66]  R. Withers,et al.  Real-space refinement of single-crystal electron diffuse scattering and its application to Bi2Ru2O7−δ , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[67]  S. Weiner,et al.  Structural Characterization of the Transient Amorphous Calcium Carbonate Precursor Phase in Sea Urchin Embryos , 2006 .

[68]  S. Hibble,et al.  Surprises from a simple material--the structure and properties of nickel cyanide. , 2007, Angewandte Chemie.

[69]  K. Chapman,et al.  Pressure-induced amorphization and porosity modification in a metal-organic framework. , 2009, Journal of the American Chemical Society.

[70]  Westphal,et al.  Diffuse phase transitions and random-field-induced domain states of the "relaxor" ferroelectric PbMg1/3Nb2/3O3. , 1992, Physical review letters.

[71]  W. Roth Magnetic Structures of MnO, FeO, CoO, and NiO , 1958 .

[72]  M. Thorpe,et al.  Structure of CaMnO3 in the range 10 K ≤ T ≤ 550 K from neutron time-of-flight total scattering , 2008 .

[73]  Yining Huang,et al.  Why do zeolites with LTA structure undergo reversible amorphization under pressure , 2001 .

[74]  Noboru Yamada,et al.  From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. , 2011, Nature materials.

[75]  Brian Richard Pauw,et al.  Experimental setup for in situ X-ray SAXS/WAXS/ PDF studies of the formation and growth of nanoparticles in near- and supercritical fluids , 2010 .

[76]  John S. O. Evans,et al.  Negative thermal expansion in ZrW2O8: mechanisms, rigid unit modes, and neutron total scattering. , 2005, Physical review letters.

[77]  C. Grey,et al.  Watching nanoparticles grow: the mechanism and kinetics for the formation of TiO2-supported platinum nanoparticles. , 2007, Journal of the American Chemical Society.

[78]  M. Calleja,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.

[79]  R. Cywinski,et al.  Neutron polarization analysis study of the frustrated magnetic ground state of β-Mn_{1−x}Al_{x} , 2008 .

[80]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[81]  Alan K. Soper,et al.  Empirical potential Monte Carlo simulation of fluid structure , 1996 .

[82]  C. Grey,et al.  Investigation of surface structures by powder diffraction: a differential pair distribution function study on arsenate sorption on ferrihydrite. , 2010, Inorganic chemistry.

[83]  Rajeev Ahuja,et al.  Structure of phase change materials for data storage. , 2006, Physical review letters.

[84]  Steve Weiner,et al.  Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization , 2003 .

[85]  W. Punch,et al.  Ab initio determination of solid-state nanostructure , 2006, Nature.

[86]  D. McMorrow,et al.  Magnetic Coulomb Phase in the Spin Ice Ho2Ti2O7 , 2009, Science.

[87]  A. Arora,et al.  The pressure-amorphized state in zirconium tungstate: a precursor to decomposition , 2004 .

[88]  J. Hutchinson,et al.  On the determinacy of repetitive structures , 2003 .

[89]  J. S. Evans,et al.  Structural description of pressure-induced amorphization in ZrW2O8. , 2007, Physical review letters.

[90]  Jun Yu Li,et al.  Unraveling atomic positions in an oxide spinel with two Jahn-Teller ions: local structure investigation of CuMn2O4. , 2009, Journal of the American Chemical Society.

[91]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of Physics: Condensed Matter.

[92]  S. Billinge Nanoscale structural order from the atomic pair distribution function (PDF): There's plenty of room in the middle , 2008 .

[93]  T. Proffen,et al.  Advances in total scattering analysis , 2009 .

[94]  L. Pauling,et al.  A trireticulate crystal structure: trihydrogen cobalticyanide and trisilver cobalticyanide. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[95]  K. Chapman,et al.  Direct observation of adsorbed H2-framework interactions in the Prussian Blue analogue MnII3[CoIII(CN)6]2: the relative importance of accessible coordination sites and van der Waals interactions. , 2006, Chemical communications.

[96]  A. Goodwin,et al.  Aperiodicity, structure, and dynamics in Ni(CN)(2) , 2009 .

[97]  A. D. Lozano-Gorrín,et al.  Local and average structures of the spin-glass pyrochlore Y2Mo2O7 from neutron diffraction and neutron pair distribution function analysis , 2009 .

[98]  D. Keen,et al.  Phonons from powder diffraction: a quantitative model-independent evaluation. , 2004, Physical review letters.

[99]  D. Keen,et al.  Magnetic structure of MnO at 10 K from total neutron scattering data. , 2006, Physical review letters.

[100]  Lars-Erik Tergenius,et al.  Room temperature synthesis and structural characterization of monoclinic LiCuO2 by X-ray and neutron diffraction , 1994 .

[101]  Shaked,et al.  Low-temperature magnetic structure of MnO: A high-resolution neutron-diffraction study. , 1988, Physical review. B, Condensed matter.

[102]  J. Lynn,et al.  Spin Correlations in the Geometrically Frustrated Pyrochlore Tb2Mo2O7 , 2008, 0807.1934.

[103]  K. Chapman,et al.  Pair distribution function analysis of pressure treated zeolite Na-A. , 2009, Chemical communications.

[104]  Martin T. Dove,et al.  Local structure in Ag3[Co(CN)6]: colossal thermal expansion, rigid unit modes and argentophilic interactions , 2008, 0802.4385.

[105]  S. Hibble,et al.  Structure of AuCN determined from total neutron diffraction. , 2003, Inorganic chemistry.