NOON States of Nine Quantized Vibrations in Two Radial Modes of a Trapped Ion.

We develop a deterministic method to generate and verify arbitrarily high NOON states of quantized vibrations (phonons), through the coupling to the internal state. We experimentally create the entangled states up to N=9 phonons in two vibrational modes of a single trapped ^{171}Yb^{+} ion. We observe an increasing phase sensitivity of the generated NOON state as the number of phonons N increases and obtain the fidelity from the contrast of the phase interference and the population of the phonon states through the two-mode projective measurement, which are significantly above the classical bound. We also measure the quantum Fisher information of the generated state and observe Heisenberg scaling in the lower bounds of phase sensitivity as N increases. Our scheme is generic and applicable to other photonic or phononic systems such as circuit QED systems or nanomechanical oscillators, which have Jaynes-Cummings-type of interactions.

[1]  K. Toyoda,et al.  Experimental realization of a quantum phase transition of polaritonic excitations. , 2013, Physical review letters.

[2]  L. Duan,et al.  Scalable implementation of boson sampling with trapped ions. , 2013, Physical review letters.

[3]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[6]  F. Schmidt-Kaler,et al.  Quantum State Engineering on an Optical Transition and Decoherence in a Paul Trap , 1999 .

[7]  M B Plenio,et al.  Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble. , 2012, Physical review letters.

[8]  Guang-Can Guo,et al.  Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. , 2011, Nature communications.

[9]  D. Leibfried,et al.  Ion traps with enhanced optical and physical access , 2008, 0810.2647.

[10]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[11]  D. Matsukevich,et al.  Cross-Kerr Nonlinearity for Phonon Counting. , 2017, Physical review letters.

[12]  A. Zeilinger Light for the quantum. Entangled photons and their applications: a very personal perspective , 2017 .

[13]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[14]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[15]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[16]  Jian-Wei Pan,et al.  De Broglie wavelength of a non-local four-photon state , 2003, Nature.

[17]  Frank K. Wilhelm,et al.  Generation and detection of NOON states in superconducting circuits , 2010, 1006.1336.

[18]  Aephraim M. Steinberg,et al.  Scalable spatial super-resolution using entangled photons , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[19]  Vlatko Vedral,et al.  Quantum Correlations in Mixed-State Metrology , 2010, 1003.1174.

[20]  Scott Aaronson,et al.  The Computational Complexity of Linear Optics , 2013, Theory Comput..

[21]  Shi-Biao Zheng,et al.  Fast and simple scheme for generating NOON states of photons in circuit QED , 2013, Scientific Reports.

[22]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[23]  Atsushi Noguchi,et al.  Hong–Ou–Mandel interference of two phonons in trapped ions , 2015, Nature.

[24]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[25]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[26]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[27]  J Mizrahi,et al.  Entanglement of atomic qubits using an optical frequency comb. , 2010, Physical review letters.

[28]  J. Cooper,et al.  Towards improved interferometric sensitivities in the presence of loss , 2011 .

[29]  S. Olmschenk,et al.  Manipulation and detection of a trapped Yb+ hyperfine qubit , 2007, 0708.0657.

[30]  W. Marsden I and J , 2012 .

[31]  J. G. Filgueiras,et al.  Continuous variables quantum computation over the vibrational modes of a single trapped ion , 2016, 1603.00065.

[32]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[33]  Bo Zhao,et al.  Heralded generation of an atomic NOON state. , 2010, Physical review letters.

[34]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[35]  Sanders,et al.  Quantum dynamics of the nonlinear rotator and the effects of continual spin measurement. , 1989, Physical review. A, General physics.

[36]  N. Vitanov,et al.  Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses , 2012, 1209.4488.

[37]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[38]  Daniel F. V. James,et al.  Proposal for a scalable universal bosonic simulator using individually trapped ions , 2012, 1205.1717.

[39]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[40]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[41]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[42]  L.-M. Duan,et al.  Correcting detection errors in quantum state engineering through data processing , 2012, 1201.4379.

[43]  J. Dowling Quantum optical metrology – the lowdown on high-N00N states , 2008, 0904.0163.

[44]  D. Matsukevich,et al.  Quantum Parametric Oscillator with Trapped Ions. , 2015, Physical review letters.

[45]  Jingning Zhang,et al.  Experimental test of the quantum Jarzynski equality with a trapped-ion system , 2014, Nature Physics.

[46]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[47]  Erik Lucero,et al.  Deterministic entanglement of photons in two superconducting microwave resonators. , 2010, Physical review letters.

[48]  M. Kim,et al.  Realization of near-deterministic arithmetic operations and quantum state engineering , 2015, 1506.07268.

[49]  L.-M. Duan,et al.  Correcting detection error in quantum computation and state engineering through data processing , 2012 .

[50]  Andrew G. White,et al.  Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source. , 2016, Physical review letters.

[51]  Y. Silberberg,et al.  High-NOON States by Mixing Quantum and Classical Light , 2010, Science.

[52]  J. P. Home,et al.  Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets. , 2015, Physical review letters.

[53]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[54]  Jeremy L O'Brien,et al.  Heralding two-photon and four-photon path entanglement on a chip. , 2010, Physical review letters.

[55]  Raphaël Clifford,et al.  Classical boson sampling algorithms with superior performance to near-term experiments , 2017, Nature Physics.

[56]  Jonathan P. Dowling,et al.  Creation of large-photon-number path entanglement conditioned on photodetection , 2001, quant-ph/0112002.

[57]  Christian Schneider,et al.  High-efficiency multiphoton boson sampling , 2017, Nature Photonics.

[58]  Zach DeVito,et al.  Opt , 2017 .

[59]  A. Leggett,et al.  Realism and the physical world , 2008 .