The effect of wall temperature fluctuations on the heat transfer and fluid flow occuring in a liquid enclosure

Abstract A numerical study of the effect of thermal fluctuations, similar to those encountered during directional solidification in Vertical Bridgman configuration (VB), on the heat transfer and fluid flow in a liquid enclosure has been undertaken. The VB when heated from the top is characterized by a stable flow regime maintained for a larger range of Rayleigh numbers than can be obtained with an Inverted Vertical Bridgman configuration (IVB) heated from below. In order to qualify the effect of thermal fluctuations on the heat and flow transfers, investigations are conducted for the range of Rayleigh numbers maintaining a stable flow ( Ra  ∈ [10 4 , 10 6 ]). The results show that the thermal oscillations at low frequency can destabilize the flow regime. A characteristic frequency at which the average heat transfer rate reaches a minimum value is identified. This minimum value is dependent on the amplitude of thermal fluctuation. The critical frequency increases linearly with the intensity of the convection (Rayleigh number).

[1]  Jalil Ouazzani,et al.  Symmetry breaking flow transitions and oscillatory flows in a 2D directional solidification model , 1994 .

[2]  J. Hyun,et al.  Resonant enhancement of natural convection heat transfer in a square enclosure , 1998 .

[3]  F. Wubs Notes on numerical fluid mechanics , 1985 .

[4]  I. Nicoară,et al.  Influence of temperature oscillations on the interface velocity during Bridgman crystal growth , 2002 .

[5]  B. P. Leonard,et al.  Beyond first‐order upwinding: The ultra‐sharp alternative for non‐oscillatory steady‐state simulation of convection , 1990 .

[6]  J. Hyun,et al.  Convection in a differentially-heated square cavity with a torsionally-oscillating lid , 1992 .

[7]  Étude numérique des instabilités de la phase fluide et de l'interface de solidification en croissance dirigée horizontale , 2003 .

[8]  J. L. Lage,et al.  Amplitude effect on convection induced by time-periodic horizontal heating , 1996 .

[9]  B. P. Leonard,et al.  The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .

[10]  T. Alboussière,et al.  Bridgman growth: Modelling and experiments , 1999 .

[11]  Georg Müller,et al.  Convection and Inhomogeneities in Crystal Growth from the Melt , 1988 .

[12]  Adrian Bejan,et al.  The resonance of natural convection in an enclosure heated periodically from the side , 1993 .

[13]  B. P. Leonard,et al.  Why You Should Not Use 'Hybrid', 'Power-Law' or Related Exponential Schemes for Convective Modelling—There Are Much Better Alternatives , 1995 .

[14]  Antonio Barletta,et al.  Time-periodic laminar mixed convection in an inclined channel , 2003 .

[15]  M. Hasnaoui,et al.  Convection naturelle dans une cavité carrée avec des parois verticales soumises à des températures périodiques , 1998 .

[16]  Patrick Bontoux,et al.  Spectral simulations of oscillatory convection at low Prandtl number , 1990 .

[17]  K. H. Winters Oscillatory convection in liquid metals in a horizontal temperature gradient , 1988 .

[18]  D. T. J. Hurle,et al.  Convective temperature oscillations in molten gallium , 1974, Journal of Fluid Mechanics.

[19]  M. Kazmierczak,et al.  Buoyancy-driven flow in an enclosure with time periodic boundary conditions , 1992 .

[20]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[21]  G. D. Davis,et al.  Effects of anisotropy and solid/liquid thermal conductivity ratio on flow instabilities during inverted Bridgman growth , 2004 .