Glutamate Spillover Promotes the Generation of NMDA Spikes

NMDA spikes are prominent in the basal dendrites of cortical pyramidal neurons and greatly expand their ability to integrate synaptic inputs. Calcium (Ca) signals during these spikes are important for synaptic plasticity and fundamentally depend on activation of NMDA receptors. However, the factors that shape the activation of these receptors and the initiation of NMDA spikes remain unclear. Here we examine the properties of NMDA spikes in the basal dendrites of layer 5 pyramidal neurons in the mouse prefrontal cortex. Using two-photon imaging, we demonstrate that NMDA spikes evoke large Ca signals in both postsynaptic spines and nearby dendrites. We find that the dendrite Ca signals depend on NMDA and AMPA receptors but not sodium (Na) or Ca channels. Using voltage-clamp recordings, we show that activation of dendrite NMDA receptors is enhanced by concerted synaptic activity. Blocking glutamate reuptake further increases activation of these receptors and promotes the initiation of NMDA spikes. We conclude that glutamate spillover and recruitment of extrasynaptic receptors contribute to the initiation of NMDA spikes. These results have important implications for how synaptic activity generates both electrical and biochemical signals in dendrites and spines.

[1]  Adam G. Carter,et al.  GABAB Receptor Modulation of Voltage-Sensitive Calcium Channels in Spines and Dendrites , 2011, The Journal of Neuroscience.

[2]  Bernardo L. Sabatini,et al.  Competitive regulation of synaptic Ca influx by D2 dopamine and A2A adenosine receptors , 2010, Nature Neuroscience.

[3]  Adam G. Carter,et al.  GABAB Receptors Modulate NMDA Receptor Calcium Signals in Dendritic Spines , 2010, Neuron.

[4]  Bartlett W. Mel,et al.  Encoding and Decoding Bursts by NMDA Spikes in Basal Dendrites of Layer 5 Pyramidal Neurons , 2009, The Journal of Neuroscience.

[5]  Bernardo L. Sabatini,et al.  Biphasic Synaptic Ca Influx Arising from Compartmentalized Electrical Signals in Dendritic Spines , 2009, PLoS biology.

[6]  Srdjan D Antic,et al.  Quantitative assessment of the distributions of membrane conductances involved in action potential backpropagation along basal dendrites. , 2009, Journal of neurophysiology.

[7]  Yi Zuo,et al.  Spine Neck Plasticity Controls Postsynaptic Calcium Signals through Electrical Compartmentalization , 2008, The Journal of Neuroscience.

[8]  Jackie Schiller,et al.  Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. , 2008, Journal of neurophysiology.

[9]  Michael J Higley,et al.  Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons , 2008, The Journal of physiology.

[10]  S. Siegelbaum,et al.  A Role for Synaptic Inputs at Distal Dendrites: Instructive Signals for Hippocampal Long-Term Plasticity , 2007, Neuron.

[11]  Srdjan D Antic,et al.  Voltage and calcium transients in basal dendrites of the rat prefrontal cortex , 2007, The Journal of physiology.

[12]  Bernardo L Sabatini,et al.  Timing and Location of Synaptic Inputs Determine Modes of Subthreshold Integration in Striatal Medium Spiny Neurons , 2007, The Journal of Neuroscience.

[13]  Roberto Araya,et al.  Sodium channels amplify spine potentials , 2007, Proceedings of the National Academy of Sciences.

[14]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[15]  B. Sabatini,et al.  Nonlinear Regulation of Unitary Synaptic Signals by CaV2.3 Voltage-Sensitive Calcium Channels Located in Dendritic Spines , 2007, Neuron.

[16]  Urit Gordon,et al.  Plasticity Compartments in Basal Dendrites of Neocortical Pyramidal Neurons , 2006, The Journal of Neuroscience.

[17]  B. Kampa,et al.  Calcium Spikes in Basal Dendrites of Layer 5 Pyramidal Neurons during Action Potential Bursts , 2006, The Journal of Neuroscience.

[18]  Paul A. Rhodes,et al.  The Properties and Implications of NMDA Spikes in Neocortical Pyramidal Cells , 2006, The Journal of Neuroscience.

[19]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[20]  Karel Svoboda,et al.  NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines , 2005, The Journal of Neuroscience.

[21]  Srdjan D Antic,et al.  A Strict Correlation between Dendritic and Somatic Plateau Depolarizations in the Rat Prefrontal Cortex Pyramidal Neurons , 2005, The Journal of Neuroscience.

[22]  B. Sabatini,et al.  State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons , 2004, Neuron.

[23]  K. Holthoff,et al.  Single‐shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex , 2004, The Journal of physiology.

[24]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[25]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[26]  K. Svoboda,et al.  Facilitation at single synapses probed with optical quantal analysis , 2002, Nature Neuroscience.

[27]  M. Scanziani,et al.  Cooperation between independent hippocampal synapses is controlled by glutamate uptake , 2002, Nature Neuroscience.

[28]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[29]  J. Kao,et al.  Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons , 2001, Science.

[30]  Yitzhak Schiller,et al.  NMDA receptor-mediated dendritic spikes and coincident signal amplification , 2001, Current Opinion in Neurobiology.

[31]  W. Regehr,et al.  Prolonged Synaptic Currents and Glutamate Spillover at the Parallel Fiber to Stellate Cell Synapse , 2000, The Journal of Neuroscience.

[32]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[33]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[34]  A. Konnerth,et al.  NMDA Receptor-Mediated Subthreshold Ca2+ Signals in Spines of Hippocampal Neurons , 2000, The Journal of Neuroscience.

[35]  L. Trussell,et al.  Control of Synaptic Depression by Glutamate Transporters , 2000, The Journal of Neuroscience.

[36]  J. Isaacson Glutamate Spillover Mediates Excitatory Transmission in the Rat Olfactory Bulb , 1999, Neuron.

[37]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[38]  G. Westbrook,et al.  The Incorporation of NMDA Receptors with a Distinct Subunit Composition at Nascent Hippocampal Synapses In Vitro , 1999, The Journal of Neuroscience.

[39]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[40]  T. Bliss,et al.  Single Synaptic Events Evoke NMDA Receptor–Mediated Release of Calcium from Internal Stores in Hippocampal Dendritic Spines , 1999, Neuron.

[41]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[42]  D. Kullmann,et al.  Activation of AMPA, Kainate, and Metabotropic Receptors at Hippocampal Mossy Fiber Synapses Role of Glutamate Diffusion , 1998, Neuron.

[43]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Kullmann,et al.  Extrasynaptic Glutamate Diffusion in the Hippocampus: Ultrastructural Constraints, Uptake, and Receptor Activation , 1998, The Journal of Neuroscience.

[45]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[46]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[47]  M. Häusser,et al.  Intersynaptic diffusion of neurotransmitter. , 1997, Trends in neurosciences.

[48]  D. Kullmann,et al.  Extrasynaptic Glutamate Spillover in the Hippocampus: Dependence on Temperature and the Role of Active Glutamate Uptake , 1997, Neuron.

[49]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[50]  Dimitri M Kullmann,et al.  LTP of AMPA and NMDA Receptor–Mediated Signals: Evidence for Presynaptic Expression and Extrasynaptic Glutamate Spill-Over , 1996, Neuron.

[51]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[52]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.