Lattice rules for multiple integration and discrepancy
暂无分享,去创建一个
[1] S. K. Zaremba,et al. La Méthode des “Bons Treillis” pour le Calcul des Intégrales Multiples , 1972 .
[2] Harald Niederreiter. The serial test for pseudo-random numbers generated by the linear congruential method , 1985 .
[3] E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale , 1962 .
[4] Lionel Giles,et al. Translated From the Chinese , 2022 .
[5] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[6] J. N. Lyness,et al. The representation of lattice quadrature rules as multiple sums , 1989 .
[7] H. Niederreiter. Pseudo-random numbers and optimal coefficients☆ , 1977 .
[8] E. Hlawka. Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .
[9] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[10] Harald Niederreiter,et al. Quasi-Monte Carlo Methods for Multidimensional Numerical Integration , 1988 .
[11] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[12] I. Sloan,et al. Lattice methods for multiple integration: theory, error analysis and examples , 1987 .
[13] Ian H. Sloan,et al. Lattice Rules — Classification and Searches , 1988 .
[14] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .