A review of plasma interactions with spacecraft in low earth orbit

All spacecraft interact in some manner with the plasma environment in space, either the natural environment or a self-induced environment. Early work on plasma spacecraft interactions focused on geosynchronous altitudes where the primary effect is spacecraft charging from the non-Maxwellian high-energy plasma environment. This work has been extensively reviewed. In the last several years, there have been a number of measurements in low Earth orbit (LEO) which, when combined with models, have revealed a rich variety of plasma interaction phenomena at these low altitudes. These are reviewed in this work. These include charging on polar orbits, ram and wake flows, use of high-voltage power systems in space, arcing on high-voltage solar arrays, noise generation in self induced plasma clouds around large, active spacecraft such as the shuttle, anomalous ionization of emitted neutral gases, use of electrodynamic tethers and plasma contactors and phenomena associated with the use of electrically propelled rockets.

[1]  G. Holman Some recent results in the interpretation of high brightness temperature microwave spike emission , 1982 .

[2]  M. S. Gussenhoven,et al.  A statistical model of auroral electron precipitation , 1985 .

[3]  R. Stenzel,et al.  Laboratory model of a tethered balloon ― Electron beam current system , 1986 .

[4]  A. Valenzuela,et al.  Non‐solar UV produced ions observed optically from the “CRIT I” Critical Velocity Ionization Experiment , 1990 .

[5]  N. Brenning,et al.  Experiment on the interaction between a plasma and a neutral gas. II , 1970 .

[6]  S. Lai Spacecraft charging thresholds in single and double Maxwellian space environments , 1991 .

[7]  Dale C. Ferguson,et al.  Solar array module plasma interactions experiment (SAMPIE) - Science and technology objectives , 1993 .

[8]  J. Wang,et al.  Ionospheric plasma flow over large high-voltage space platforms. I - Ion-plasma-time scale interactions of a plate at zero angle of attack. II - The formation and structure of plasma wake , 1992 .

[9]  Susumu Sasaki,et al.  Vehicle charging observed in SEPAC Spacelab-1 experiment , 1986 .

[10]  D. Hastings Theory of plasma contactors used in the ionosphere , 1987 .

[11]  Mengu Cho,et al.  Dielectric charging processes and arcing rates of high voltage solararrays , 1991 .

[12]  L. Linson,et al.  Current-voltage characteristics of an electron- emitting satellite in the ionosphere. , 1969 .

[13]  L. Iess,et al.  Model of the interaction of a hollow cathode with the ionosphere , 1989 .

[14]  D. Hunton,et al.  Thruster firing effects in the shuttle environment: 2. Positive ion composition , 1994 .

[15]  N. A. Saflekos,et al.  Field‐aligned current, convective electric field, and auroral particle measurements during a major magnetic storm , 1981 .

[16]  Roy B. Torbert,et al.  A magnetospheric critical velocity experiment: Particle results , 1986 .

[17]  H. Alfvén The Origin of the Solar System , 1982 .

[18]  J. Hoffman,et al.  Ion sputtering from satellite surfaces , 1981 .

[19]  W. J. Burke,et al.  Effects of thruster firings on the shuttle's plasma and electric field environment , 1993 .

[20]  D. R. Rivas Theory and simulation of electrostatic wave turbulence in the space shuttle-induced plasma environment , 1993 .

[21]  Daniel E. Hastings,et al.  Theory of plasma contactors in ground-based experiments and low Earth orbit , 1990 .

[22]  D. Hastings,et al.  Theory and experimental review of plasma contactors , 1989 .

[23]  D. Hardy,et al.  Compact ion/electron analyzer for spaceflight or laboratory use , 1992 .

[24]  D. Hastings,et al.  Upper bound estimates of anomalous ion production in space‐based critical ionization velocity experiments , 1993 .

[25]  D. Hastings,et al.  Bounds on current collection from the far field by plasma clouds in the ionosphere , 1989 .

[26]  A. Barnett,et al.  Radiation of plasma waves by a conducting body moving through a magnetized plasma , 1986 .

[27]  E. Whipple,et al.  Potentials of surfaces in space , 1981 .

[28]  I. Katz,et al.  Fluid model of plasma outside a hollow cathode neutralizer , 1981 .

[29]  Brian L. Murphy,et al.  Potential buildup on an electron-emitting ionospheric satellite , 1967 .

[30]  Susumu Sasaki,et al.  Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere , 1990 .

[31]  R. Torbert Review of critical velocity experiments in the ionosphere , 1990 .

[32]  N. B. Myers,et al.  The interaction of an artificial electron beam with the Earth's upper atmosphere: Effects on spacecraft charging and the near‐plasma environment , 1990 .

[33]  D. Hastings,et al.  The physics of positively biased conductors surrounded by dielectrics in contact with a plasma , 1989 .

[34]  J. G. Laframboise,et al.  Current collection by probes and electrodes in space magnetoplasmas: A review , 1993 .

[35]  Mengu Cho,et al.  Computer particle simulation of high-voltage solar array arcing onset , 1993 .

[36]  Daniel E. Hastings,et al.  The radiation impedance of an electrodynamic tether with end connectors , 1987 .

[37]  Susumu Sasaki,et al.  Neutralization of Beam-Emitting Spacecraft by Plasma Injection , 1987 .

[38]  M. Dobrowolny,et al.  Radiation from long conducting tethers moving in the near-earth environment , 1982 .

[39]  M. S. Gussenhoven,et al.  A statistical model of auroral ion precipitation , 1989 .

[40]  C. L. Enloe,et al.  Ion collection in a spacecraft wake: Laboratory simulations , 1993 .

[41]  A. Jursa,et al.  Handbook of geophysics and the space environment , 1985 .

[42]  Daniel E. Hastings,et al.  Threshold voltage for arcing on negatively biased solar arrays , 1990 .

[43]  D. Hastings,et al.  The interpretation of space shuttle measurements of ionic species , 1987 .

[44]  I. Katz,et al.  Theory of plasma contactors for electrodynamic tethered satellite systems , 1987 .

[45]  D. Hastings,et al.  Simulation of the critical ionization velocity: Effect of using physically correct mass ratios , 1992 .

[46]  I. Cairns Transition from ring to beam arc distributions of water ions near the Space Shuttle Orbiter , 1990 .

[47]  M. Carruth,et al.  Measurement of the Charge-Exchange Plasma Flow from an Ion Thruster , 1981 .

[48]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[49]  D. Gurnett,et al.  Plasma waves observed in the near vicinity of the space shuttle , 1991 .

[50]  G. Lu,et al.  On the theory of CIV , 1990 .

[51]  M. Dobrowolny,et al.  Electrodynamic aspects of the first tethered satellite mission , 1993 .

[52]  R. Latham Potential Threats to the Performance of Vacuum-Insulated High-Voltage Devices in a Space Environment , 1993 .

[53]  Hitoshi Kuninaka,et al.  Arcing rates for High Voltage Solar Arrays - Theory, experiment, and predictions , 1992 .

[54]  D. Hunton Thruster firing effects in the shuttle environment: 1. Neutral gas composition , 1994 .

[55]  John R. Winckler,et al.  The application of artificial electron beams to magnetospheric research , 1980 .

[56]  I︠a︡. L. Alʹpert The near-earth and interplanetary plasma , 1983 .

[57]  D. Hastings Enhanced current flow through a plasma cloud by induction of plasma turbulence , 1987 .

[58]  Daniel E. Hastings,et al.  Plasma contactors for use with electrodynamic tethers for power generation , 1988 .

[59]  T. Neubert,et al.  Estimating radiated power from a conducting tethered satellite system , 1991 .

[60]  E. Szuszczewicz Technical issues in the conduct of large space platform experiments in plasma physics and geoplasma sciences , 1986 .

[61]  Papadopoulos Scaling of the beam plasma discharge for low magnetic fields. Interim report , 1986 .

[62]  P. Wilbur,et al.  Space-charge-limited current flow in a spherical double sheath , 1986 .

[63]  H.-C. Yeh,et al.  High-level spacecraft charging in the low-altitude polar auroral environment , 1985 .

[65]  Daniel E. Hastings,et al.  Ionospheric plasma flow over large high-voltage space platforms. II: The formation and structure of plasma wake , 1992 .

[66]  H. Garrett The charging of spacecraft surfaces , 1981 .

[67]  Patrick T. Newell,et al.  Review of the critical ionization velocity effect in space , 1985 .

[68]  D. Hastings,et al.  Theoretical interpretation of the electrostatic waves in the space shuttle induced plasma environment , 1992 .

[69]  D. Gurnett,et al.  Control of plasma waves associated with the space shuttle by the angle between the orbiter's Velocity vector and the magnetic field , 1991 .

[70]  Robert W. Schunk,et al.  Where do negatively biased solar arrays arc , 1990 .

[71]  W. Paterson,et al.  Hot ion plasmas from the cloud of neutral gases surrounding the space shuttle , 1989 .

[72]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .

[73]  Eduardo Ahedo,et al.  Systems analysis of electrodynamic tethers , 1992 .

[74]  C. Purvis,et al.  Active Control of Spacecraft Charging , 1980 .

[75]  Gerhard Haerendel,et al.  Alfvén’s Critical Velocity Effect Tested in Space , 1982 .

[76]  R. A. Kuharski,et al.  Structure of the bipolar plasma sheath generated by SPEAR I , 1989 .

[77]  D. E. Parks,et al.  The Role of Unneutralized Surface Ions in Negative Potential Arcing , 1985, IEEE Transactions on Nuclear Science.

[78]  T. Neubert,et al.  Recent results from studies of electron beam phenomena in space plasmas , 1992 .

[79]  R. Bechtel,et al.  Experimental studies on spacecraft arcing , 1993 .

[80]  M. S. Gussenhoven,et al.  The statistical electron environment for Defense Meteorological Satellite Program eclipse charging , 1987 .