Physiological Changes in Chronic Epileptic Rats Are Prominent in Superficial Layers of the Medial Entorhinal Area

Summary:  Purpose: We investigated whether the functional network properties of the medial entorhinal area (MEA) of the entorhinal cortex were altered in a rat model of chronic epilepsy that is characterized by extensive cell loss in MEA layer III.

[1]  Carlos E. D'Attellis,et al.  Detection of epileptic events in electroencephalograms using wavelet analysis , 2007, Annals of Biomedical Engineering.

[2]  Jan A. Gorter,et al.  Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation , 2004, Experimental Neurology.

[3]  K. Lingenhöhl,et al.  Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domains , 2004, Experimental Brain Research.

[4]  F. H. Lopes da Silva,et al.  Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re‐entrance in the hippocampal–entorhinal system , 2003, The European journal of neuroscience.

[5]  Xiling Wen,et al.  Reduced Inhibition and Increased Output of Layer II Neurons in the Medial Entorhinal Cortex in a Model of Temporal Lobe Epilepsy , 2003, The Journal of Neuroscience.

[6]  M. Husain The parahippocampal region: organization and role in cognitive function , 2003 .

[7]  A. Holtmaat,et al.  GAP‐43 mRNA and protein expression in the hippocampal and parahippocampal region during the course of epileptogenesis in rats , 2003, The European journal of neuroscience.

[8]  M. Witter,et al.  Topographical and laminar organization of subicular projections to the parahippocampal region of the rat , 2003, The Journal of comparative neurology.

[9]  M. Witter,et al.  Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat , 2003, Hippocampus.

[10]  H. Scharfman The parahippocampal region in temporal lobe epilepsy , 2002 .

[11]  Gamma and ripple oscillations: functional indices of hippocampal–entorhinal interactions , 2002 .

[12]  Floris G. Wouterlood Spotlight on the neurones (I): cell types, local connectivity, microcircuits, and distribution of markers , 2002 .

[13]  M. Avoli,et al.  Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro , 2002, Progress in Neurobiology.

[14]  Charles L. Wilson,et al.  Local Generation of Fast Ripples in Epileptic Brain , 2002, The Journal of Neuroscience.

[15]  Walter J. Freeman,et al.  Response dynamics of entorhinal cortex in awake, anesthetized, and bulbotomized rats , 2001, Brain Research.

[16]  E. Aronica,et al.  Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin‐immunoreactive neurons , 2001, The European journal of neuroscience.

[17]  R. S. Jones,et al.  Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro , 2000, Neuroscience.

[18]  M. Witter,et al.  Anatomical Organization of the Parahippocampal‐Hippocampal Network , 2000, Annals of the New York Academy of Sciences.

[19]  A. Alonso,et al.  Oscillatory Activity in Entorhinal Neurons and Circuits: Mechanisms and Function , 2000, Annals of the New York Academy of Sciences.

[20]  A. Alonso,et al.  Direct demonstration of persistent Na+ channel activity in dendritic processes of mammalian cortical neurones , 1999, The Journal of physiology.

[21]  M. de Curtis,et al.  Carbachol induces fast oscillations in the medial but not in the lateral entorhinal cortex of the isolated guinea pig brain. , 1999, Journal of neurophysiology.

[22]  T. Gloveli,et al.  Carbachol‐induced changes in excitability and [Ca2+]i signalling in projection cells of medial entorhinal cortex layers II and III , 1999, The European journal of neuroscience.

[23]  O. P. Ottersen,et al.  Ultrastructure and immunocytochemical distribution of GABA in layer III of the rat medial entorhinal cortex following aminooxyacetic acid-induced seizures , 1999, Experimental Brain Research.

[24]  H. Scharfman,et al.  Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss. , 1998, Journal of neurophysiology.

[25]  T. Gloveli,et al.  Interaction between superficial layers of the entorhinal cortex and the hippocampus in normal and epileptic temporal lobe , 1998, Epilepsy Research.

[26]  D. Amaral,et al.  Entorhinal cortex of the rat: Organization of intrinsic connections , 1998, The Journal of comparative neurology.

[27]  N. Fountain,et al.  Responses of deep entorhinal cortex are epileptiform in an electrogenic rat model of chronic temporal lobe epilepsy. , 1998, Journal of Neurophysiology.

[28]  M. Avoli,et al.  Laminar organization of epileptiform discharges in the rat entorhinal cortex in vitro , 1998, The Journal of physiology.

[29]  F. Edward Dudek,et al.  Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy , 1998, Epilepsy Research.

[30]  G. Buzsáki,et al.  Gamma Oscillations in the Entorhinal Cortex of the Freely Behaving Rat , 1998, The Journal of Neuroscience.

[31]  A. Alonso,et al.  Muscarinic Induction of Synchronous Population Activity in the Entorhinal Cortex , 1997, The Journal of Neuroscience.

[32]  H. Scharfman Hyperexcitability of entorhinal cortex and hippocampus after application of aminooxyacetic acid (AOAA) to layer III of the rat medial entorhinal cortex in vitro. , 1996, Journal of neurophysiology.

[33]  N. Fountain,et al.  Responses of the superficial entorhinal cortex in vitro in slices from naive and chronically epileptic rats. , 1996, Journal of neurophysiology.

[34]  M. Witter,et al.  Entorhinal-Hippocampal Interactions Revealed by Real-Time Imaging , 1996, Science.

[35]  R. Schwarcz,et al.  Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  M. Witter,et al.  Quantitative morphological analysis of subicular terminals in the rat entorhinal cortex , 1995, Hippocampus.

[37]  D. Spencer,et al.  Entorhinal‐Hippocampal Interactions in Medial Temporal Lobe Epilepsy , 1994, Epilepsia.

[38]  R. Schwarcz,et al.  Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy , 1993, Epilepsy Research.

[39]  U. Heinemann,et al.  Entorhinal cortex—hippocampal interactions in normal and epileptic temporal lobe , 1993, Hippocampus.

[40]  N. Tamamaki,et al.  Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure‐injection of neurobiotin , 1993, Hippocampus.

[41]  R. S. Jones,et al.  Basket-like interneurones in layer II of the entorhinal cortex exhibit a powerful NMDA-mediated synaptic excitation , 1993, Neuroscience Letters.

[42]  G. Golarai,et al.  Septotemporal variation of the supragranular projection of the mossy fiber pathway in the dentate gyrus of normal and kindled rats , 1992, Hippocampus.

[43]  R. Llinás,et al.  Role of the hippocampal-entorhinal loop in temporal lobe epilepsy: extra- and intracellular study in the isolated guinea pig brain in vitro , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  R. S. Jones,et al.  Synchronous discharges in the rat entorhinal cortex in vitro: Site of initiation and the role of excitatory amino acid receptors , 1990, Neuroscience.

[45]  R. Llinás,et al.  Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II , 1989, Nature.

[46]  C. Köhler Intrinsic connections of the retrohippocampal region in the rat brain. II. The medial entorhinal area , 1986, The Journal of comparative neurology.

[47]  C. Köhler Intrinsic connections of the retrohippocampal region in the rat brain. II. The medial entorhinal area. , 1986, The Journal of comparative neurology.

[48]  C. Köhler Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex , 1985, The Journal of comparative neurology.

[49]  R. S. Sloviter,et al.  A simplified timm stain procedure compatible with formaldehyde fixation and routine paraffin embedding of rat brain , 1982, Brain Research Bulletin.

[50]  C. Nicholson,et al.  Experimental optimization of current source-density technique for anuran cerebellum. , 1975, Journal of neurophysiology.

[51]  R. Racine,et al.  Modification of seizure activity by electrical stimulation. 3. Mechanisms. , 1972, Electroencephalography and clinical neurophysiology.

[52]  R. Racine,et al.  Modification of seizure activity by electrical stimulation. II. Motor seizure. , 1972, Electroencephalography and clinical neurophysiology.