Ag fractals formed on top of a porous TiO2 thin film

This work demonstrates the formation of Ag fractals on top of a Ag:TiO2 thin film. The dendrite-type objects emerged from a homogeneous and highly transparent Ag:TiO2 nanocomposite, via the mechanism of diffusion-limited-aggregation of Ag atoms, during heat-treatment at 500 °C. A porous TiO2 matrix was also formed during this process, opening a wide range of possible applications, namely in sensing-based ones, together with surface enhanced spectroscopies. Furthermore, fractals incorporate a wide range of shapes and spatial scales, inducing a potentially interesting optical response, over the whole visible range, presumably related with localized surface plasmon modes with very broad spectral distribution. Ag fractals on porous TiO2 matrix, emerged from a sputtered Ag:TiO2 nanocomposite thin film, after annealing at 500 °C. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

[1]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[2]  P. Chu,et al.  Light-emitting diodes enhanced by localized surface plasmon resonance , 2011, Nanoscale research letters.

[3]  Anatoly V Zayats,et al.  Data storage: The third plasmonic revolution. , 2010, Nature nanotechnology.

[4]  J. Popp,et al.  Towards TiO2Ag porous nanocomposites based SERS sensors for chemical pollutant detection , 2014 .

[5]  S. Linic,et al.  Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons , 2010 .

[6]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[7]  Vladimir M. Shalaev,et al.  Saturation effect in the optical response of Ag-nanoparticle fractal aggregates , 2006 .

[8]  M. Vasilevskiy,et al.  Thin films composed of gold nanoparticles dispersed in a dielectric matrix: The influence of the host matrix on the optical and mechanical responses , 2015 .

[9]  Xinghua Li,et al.  Plasmonic Ag deposited TiO2 nano-sheet film for enhanced photocatalytic hydrogen production by water splitting , 2014, Nanotechnology.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  J. A. Sánchez-García,et al.  Optical properties and refractive index sensitivity of reactive sputtered oxide coatings with embedded Au clusters , 2014 .

[12]  C. Pascual-Izarra,et al.  Simultaneous PIXE and RBS data analysis using Bayesian inference with the DataFurnace code , 2006, 0707.2429.

[13]  Y. X. Wang,et al.  Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms , 2018 .

[14]  Qing-Hua Xu,et al.  Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles , 2014 .

[15]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[16]  S. Šturm,et al.  Weak polyion multilayer-assisted in situ synthesis as a route toward a plasmonic Ag/TiO2 photocatalyst. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[17]  T. Polcar,et al.  Thin films composed of Ag nanoclusters dispersed in TiO2: Influence of composition and thermal annealing on the microstructure and physical responses , 2015 .

[18]  L. Sander,et al.  Diffusion-limited aggregation, a kinetic critical phenomenon , 1981 .

[19]  A. Ganguli,et al.  Enhanced functionalization of Mn2O3@SiO2 core-shell nanostructures , 2011, Nanoscale research letters.

[20]  W. Lu,et al.  Hierarchical Porous Plasmonic Metamaterials for Reproducible Ultrasensitive Surface‐Enhanced Raman Spectroscopy , 2015, Advanced materials.

[21]  Ilker S. Bayer,et al.  Tailored polymer–metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates , 2009, Nanotechnology.

[22]  K. Leifer,et al.  Microstructural evolution of Au/TiO2 nanocomposite films: The influence of Au concentration and thermal annealing , 2015 .

[23]  T. Vicsek Fractal Growth Phenomena , 1989 .

[24]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters , 2018 .

[25]  Suljo Linic,et al.  Photochemical transformations on plasmonic metal nanoparticles. , 2015, Nature materials.

[26]  H. Eilers,et al.  Large broadband visible to infrared plasmonic absorption from ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix , 2006 .

[27]  B. Hammer,et al.  Enhanced Bonding of Silver Nanoparticles on Oxidized TiO2(110) , 2010 .

[28]  Nak-Hyeon Kim,et al.  Enhanced surface plasmon resonance detection using porous ITO–gold hybrid substrates , 2012 .

[29]  Tetsuya Kida,et al.  Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes , 2009 .

[30]  B. Lee,et al.  Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices , 2013, Nature Photonics.

[31]  Vadim A. Markel,et al.  Small-particle composites. I. Linear optical properties. , 1996, Physical review. B, Condensed matter.

[32]  Shutao Wang,et al.  Designing fractal nanostructured biointerfaces for biomedical applications. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  L. Reimer Electron Energy‐Loss Spectroscopy in the Electron Microscope , 1997 .

[34]  T. Trindade,et al.  Hybrid nanostructures for SERS: materials development and chemical detection. , 2015, Physical chemistry chemical physics : PCCP.

[35]  M. Vasilevskiy,et al.  Resonance energy transfer in self-organized organic/inorganic dendrite structures. , 2013, Nanoscale.

[36]  B. Tatarchuk,et al.  Understanding the dispersion of Ag on high surface area TiO2 supports using XPS intensity ratios , 2015 .

[37]  Mengfan Wang,et al.  Optimization and Application of Reflective LSPR Optical Fiber Biosensors Based on Silver Nanoparticles , 2015, Sensors.

[38]  J. Solís,et al.  Linear and third-order nonlinear optical responses of multilayered Ag:Si3N4 nanocomposites , 2009, Nanotechnology.

[39]  C. Kübel,et al.  Evolution of the surface plasmon resonance of Au:TiO2 nanocomposite thin films with annealing temperature , 2014, Journal of Nanoparticle Research.

[40]  P. Němec,et al.  Multicolour photochromic behaviour of silver nanoparticles in titanium dioxide matrix , 2008 .

[41]  Tuan Vo-Dinh,et al.  Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[42]  M. Vasilevskiy,et al.  Tuning of the surface plasmon resonance in TiO2/Au thin films grown by magnetron sputtering: The effect of thermal annealing , 2011 .