Extrapolated quantum states, void states and a huge novel class of distillable entangled states

A nice and interesting property of any pure tensor product state is that each such state has distillable entangled states at an arbitrarily small distance $$\epsilon $$ϵ in its neighborhood. We say that such nearby states are $$\epsilon $$ϵ-entangled, and we call the tensor product state in that case, a “boundary separable state,” as there is entanglement at any distance from this “boundary.” Here we find a huge class of separable states that also share the property mentioned above—they all have $$\epsilon $$ϵ-entangled states at any small distance in their neighborhood. Furthermore, the entanglement they have is proved to be distillable. We then extend this result to the discordant/classical cut and show that all classical states (correlated and uncorrelated) have discordant states at distance $$\epsilon $$ϵ, and provide a constructive method for finding $$\epsilon $$ϵ-discordant states.

[1]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[2]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[3]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[4]  Aharon Brodutch,et al.  Quantum discord, local operations, and Maxwell's demons , 2010 .

[5]  M. Horodecki,et al.  Inseparable Two Spin- 1 2 Density Matrices Can Be Distilled to a Singlet Form , 1997 .

[6]  M. Ying,et al.  Existence of Universal Entangler , 2007, 0704.1473.

[7]  Tal Mor,et al.  "Quantumness" versus "Classicality" of Quantum States , 2007 .

[8]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[9]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[10]  Tal Mor,et al.  Extrapolated States, Void States, and a Huge Novel Class of Distillable Entangled States , 2014, TPNC.

[11]  Tal Mor,et al.  Entanglement and deterministic quantum computing with one qubit , 2016, 1606.05283.

[12]  Hugo Cable,et al.  Exact and efficient simulation of concordant computation , 2015, 1507.07196.

[13]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[14]  Aharon Brodutch,et al.  Discord and quantum computational resources , 2012, 1207.5105.

[15]  L. Gurvits,et al.  Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.

[16]  Lin Chen,et al.  Distillability and PPT entanglement of low-rank quantum states , 2011, 1101.5134.

[17]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[18]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[19]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[20]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[21]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[22]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[23]  Animesh Datta,et al.  QUANTUM DISCORD AND QUANTUM COMPUTING — AN APPRAISAL , 2011, 1109.5549.

[24]  O. Gühne,et al.  Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states , 2007 .

[25]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[26]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[27]  J. Cirac,et al.  Characterization of distillable and activatable states using entanglement witnesses , 2001, quant-ph/0110174.

[28]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[29]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[30]  D Cavalcanti,et al.  Unified framework for correlations in terms of local quantum observables. , 2009, Physical review letters.

[31]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[32]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.